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Optimization in multi-scale segmentation of high-resolution satellite
images for artificial feature recognition
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Multi-resolution segmentation, as one of the most popular approaches in object-

oriented image segmentation, has been greatly enabled by the advent of the

commercial software, eCognition. However, the application of multi-resolution

segmentation still poses problems, especially in its operational aspects. This

paper addresses the issue of optimization of the algorithm-associated parameters

in multi-resolution segmentation. A framework starting with the definition of

meaningful objects is proposed to find optimal segmentations for a given feature

type. The proposed framework was tested to segment three exemplary artificial

feature types (sports fields, roads, and residential buildings) in IKONOS multi-

spectral images, based on a sampling scheme of all the parameters required by the

algorithm. Results show that the feature-type-oriented segmentation evaluation

provides an insight to the decision-making process in choosing appropriate

parameters towards a high-quality segmentation. By adopting these feature-type-

based optimal parameters, multi-resolution segmentation is able to produce

objects of desired form to represent artificial features.

1. Introduction

Remotely sensed imagery is not composed of semantically discrete real-world

objects. Instead, it contains a grid of square pixels that only exhibit simple

topological adjacency (Hay et al. 2003). Pixel-based image-processing algorithms are

argued as being restricted because they only apply on pixels or square areas (Benz

et al. 2004). Alternatively, segmenting an image into meaningful objects makes it

possible to create more informative attributes such as shape, texture, and contextual
information. Segmentation is widely adopted as an essential process for most

subsequent image-analysis tasks (Haris et al. 1998). It divides an image into regions

that are expected to correspond to structural units in the scene (Russ 1999). In

remote sensing, image segmentation is desired to provide meaningful object

primitives for further feature recognition and thematic classification.

Numerous segmentation algorithms have been developed during the past few

years. In the taxonomy of segmentation algorithms, they can be broadly grouped

into three categories: point-based (Mardia and Hainsorth 1988), edge-based (Jain

1989, Le Moigne and Tilton 1995), and region-based techniques (Chen et al. 1991).
Point-based or pixel-based segmentation is conceptually the simplest approach

(Jèhne 2005). It separates the pixels of an image into different segments by

thresholding. Edge-based segmentation approaches track image edges and link them

into contours to represent the boundaries of image objects. Region-based
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segmentation mainly includes region merging and split-and-merge approaches. Both

detect the regions that meet certain homogeneity criteria. Hybrid approaches are

also proposed to improve segmentation performance (Pavlidis and Liow 1990,

Shandley et al. 1996, Fan et al. 2001). In addition, some other approaches based on

stochastic theory are also found in the literature (Kraaikamp et al. 2001, Wang and

Wang 2004); they assume a true image to be a realization of a Markov or Gibbs

random field with a distribution that captures the spatial context of the scene (Haris

et al. 1998).

Multi-resolution segmentation belongs to the category of region-based techni-

ques. The algorithm is characterized as a bottom-up region-merging process starting

with one-pixel objects (Baatz et al. 2004). Smaller image objects are subsequently

merged into larger ones, forming segmentations with objects in different scales.

Multi-resolution segmentation has been adopted by a great number of researchers

(Darwish et al. 2003, Giada et al. 2003, Shackelford and Davis 2003, Wang et al.

2004, Al-Khudhairy et al. 2005, Kressler et al. 2005, Wei et al. 2005). However, the

application of the algorithm still poses several problems. One major characteristic of

the algorithm is the ability to segment an image into objects of similar scales at the

same level and objects of different scales across levels (the algorithm and associated

parameters will be discussed in detail in the following section). Yet, remotely sensed

images, especially high-resolution images, often include multiple levels of features

that are best addressed at different spatial scales (Chen et al. 2004). From the

perspective of feature recognition and extraction, for instance, a single residential

building differs so greatly from a large shopping mall in terms of scale or size that

they are unlikely to be depicted simultaneously on just one single level of

segmentation. Consequently, it would be wise to extract the object primitives for

different types or classes of features from different segmentation levels. This raises

an interesting issue of what would be the best segmentation level for producing

optimal object primitives for a given feature class. Until now, there has been little

effort devoted to solving this problem in the literature. This may be due to the still-

vague definition of segmentation quality in the context of remote-sensing analysis.

This paper proposes a framework of finding an optimal multi-resolution

segmentation for a given feature type. The core algorithm of multi-resolution

segmentation is introduced in the following section. The proposed framework starts

with the definition of meaningful objects for each of the feature types. IKONOS

multi-spectral images are used as experimental data. Sports fields, roads, and

residential buildings serve as the exemplary feature types to demonstrate the

principles. A series of experiments is designed, based on a sampling scheme of all the

parameters required by the algorithm. The optimal segmentations are then found by

the proposed feature-type-based segmentation assessment.

2. Algorithm of multi-resolution segmentation

Multi-resolution segmentation algorithm has been developed and implemented in

the commercial software eCognition (Baatz et al. 2004). The idea of this algorithm is

to minimize the average heterogeneity of image objects weighted by their size during

the merging process. The merges are performed in a pairwise manner. For each

possible merge of two adjacent objects, the heterogeneity change, also referred to as

‘merging cost’ in Baatz and Schäpe (2000), is quantitatively evaluated and then

compared with a parameter (scale parameter Sp) specified as the threshold. A

possible merge is fulfilled if its heterogeneity change is smaller than the given value

4626 J. Tian and D.-M. Chen
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of the parameter. Hence, a larger value allows for more merges than a smaller value,

leading to the production of larger objects.

2.1 Measurement of heterogeneity change

In the algorithm, the heterogeneity change caused by a possible merge is evaluated

by calculating and mixing the spectral and shape differences between the situations

before and after the merge. For any pair of adjacent objects, an overall

heterogeneity change for a possible merge is broken down into two contributors,

which are linearly combined to calculate a value as the following.

Dhoverall~ 1{Wshape

� �
DhspectralzWshapeDhshape ð1Þ

where Wshape is an arbitrary weight of importance ranging from 0 to 1. Dhspectral and

Dhshape measure the heterogeneity changes of spectral and shape, respectively. They

are defined as follows:

Dhspectral~
XN

i~1

Wi nMerges
Merge
i { nObj1s

Obj1
i znObj2s

Obj2
i

� �� �
ð2Þ

Dhshape~WcmpctDhcmpctz 1{Wcmpct

� �
Dhsmooth ð3Þ

N denotes the number of channels of an image to be segmented. Wi represents the

weight assigned to the ith channel, and n denotes the number of pixels belonging to

the object. In the algorithm, the spectral heterogeneity of an object is measured by

the standard deviation of the spectral values of the pixels making up the object. The

terms s
Obj1
i , s

Obj2
i , and s

Merge
i are used to represent the respective standard deviations

during a pairwise merge (equation (2)).

As can be seen in equation (3), the measure of shape heterogeneity change is

further broken down into two sub measures: compactness change Dhcmpct and

smoothness change Dhsmooth. These two measures are also linearly weighted in the

same way as equation (1). In multi-resolution segmentation, the compactness of an

object is measured by calculating the deviation from the ideal compact form given

by the relation between factual border length l and the root of the object size n in

pixels (Benz et al. 2004). Meanwhile, smoothness is measured by the ratio of factual

border length l over the perimeter b of the bounding box. (The bounding box is

defined as the rectangle that is just large enough to contain all object pixels in Jèhne

2005.) The measures Dhcmpct and Dhsmooth are therefore defined and obtained in a

comparative manner illustrated by equations (4) and (5).

Dhcmpct~nMerge
lMerge
ffiffiffiffiffiffiffiffiffiffiffiffi
nMerge
p { nObj1

lObj1
ffiffiffiffiffiffiffiffiffiffi
nObj1
p znObj2

lObj2
ffiffiffiffiffiffiffiffiffiffi
nObj2
p

 !

ð4Þ

Dhsmooth~nMerge
lMerge

bMerge
{ nObj1

lObj1

bObj1

znObj2

lObj2

bObj2

� �
ð5Þ

2.2 Decision heuristics of merging

Equations (1)–(5) govern the local computation and decision-making for all the

possible pairwise merges. In order to trigger the merging process and reach a

Artificial feature recognition 4627



D
ow

nl
oa

de
d 

B
y:

 [Q
ue

en
's

 U
ni

ve
rs

ity
] A

t: 
16

:4
3 

3 
O

ct
ob

er
 2

00
7 

repeatable segmentation result when given a certain set of parameters, some objects

are designated as points of departure. Furthermore, the algorithm treats image

objects in a distributed order (Baatz and Schäpe 2000). Multi-resolution

segmentation allows all image objects to grow simultaneously, so that they will

always be of comparable size. For more details, refer to Baatz et al. (2004) and Benz

et al. (2004).

2.3 Algorithm discussion

The principles described in §2.1 and 2.2 ensure a steady and unique segmentation

result given a certain set of the parameters (Wshape, Wcmpct, and Sp) to an image. It is

noteworthy that most of the common segmentations have difficulties in reproducing

the same result for the same region from different subsets. The same image area

being part of different subsets will be segmented differently by means of these

procedures because they are dependent on the particular feature space of the

respective subset (Baatz et al. 2004). Multi-resolution segmentation is superior at

this point, segmenting the same area in the same or very similar way, no matter how

large the entire scene under processing.

Moreover, the algorithm has the capability of considering not only the spectral

information but also the shape information for each possible merge. Although the

account of shape information to some degree may lead to a better segmentation

result, it is hard to determine how much weight the shape information should be

given and what kind of shape information should mainly be used. The value

choosing for the parameters Wshape and Wcmpct may strongly affect the form of the

resulting objects from a segmented image. Baatz et al. (2004) suggest emphasizing

the spectral information as much as possible while keeping the shape information as

much as necessary to produce image objects. The reason is because the use of shape

information works at the cost of spectral homogeneity; using too much shape

information can therefore reduce the quality of the segmentation results. This

suggestion is recognized as a ‘rule of thumb’ short of quantitative explanation or

evidence. There is little insight as to how large or small the parameters should be in

order to obtain the optimal results to purpose, and how sensitive the results are to

the parameters’ change. These questions will be answered, even if not ultimately, in

this research.

3. Methodology

In order to be valuable to the following classification or feature extraction, an image

should ideally be segmented into so-called meaningful objects (Baatz et al. 2004). An

immediate problem that researchers need to confront is how to define or assess an

object’s meaningfulness. The definition of meaningful objects therefore constitutes

the first step towards the evaluation of a segmentation in this research. The second

step is to perform a series of experimental segmentations based on a sampling

scheme of the algorithm-required parameters. Third, a measure, termed Gs, is

proposed to quantify the goodness of the segmentations. By comparing to the

desired feature shape (digitized polygon), the segmentation results can be

quantitatively evaluated by Gs. The optimal parameters can thus be found out

and applied to other test images.

4628 J. Tian and D.-M. Chen
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3.1 Define meaningful objects

Intuitively, an object should be defined as meaningful if it precisely depicts its

background feature in an appropriate shape and size. This shape should satisfy the

human eye and can generally be understood as an instance of the conceptual

recognition of the feature class. Furthermore, the conceptual recognition of different

feature classes is rooted in their different regularities in terms of shape and structure.

Hence, it seems unwise to define an object’s meaningfulness in general; rather, a

feature-class respective definition might be more suitable. In other words, the same

object may be meaningless to one feature class, but meaningful to another. As a

comprehensive definition for all the feature types is a demanding task, it was decided

that only the classes of sports fields, roads, and residential buildings, representing

features with different complexity levels and shapes, are to be included to

demonstrate the principles.

3.1.1 Sports fields. Among the three feature classes, sports fields are thought of as

having the least complexity in both shape and composition. Although normally

covering a fairly large area, the central fields surrounded by tracks are spatially

intensive, usually found in an elliptical shape. The object representing such a central

field should be defined as meaningful when it has a relatively high elliptic fit and is

large enough. The elliptic fit can be measured based on the creation of an ellipse with

the same area and same ratio of length/width as the considered object. The fitness can

then be reflected by the ratio of the area of the object over the area of the object

portion inside the ellipse (Baatz et al. 2004). The ratio ranges from 0 to 1: the higher

the ratio, the better the elliptic fit. In figure 1, the central field is represented by a

meaningful object in the right graph but four non-meaningful objects in the middle.

3.1.2 Road. Roads have a very strong regularity. In remote-sensing images, roads,

intended to form networks in urban areas, are generally recognized as linear,

connective, and extensive. Regardless of their structural complexity, roads are

essentially recognized by their linearity. An object should therefore be defined as a

meaningful road when it is rather linear. It seems fair to say that this definition actually

abstracts road segments rather than the overly broad concept of road. In practice,

however, it is not so straightforward to quantitatively capture an object’s linearity.

Road segments can be reasonably categorized into two groups of conceptual

models: the objects of connection and the objects of intersection. The typical shapes

of the former and the latter are shown by (a), (b) and (c), (d), respectively, in figure 2.

Figure 1. Comparison of a sports field shown on the IKONOS image subset (left), and the
meaningless (middle) and meaningful (right) objects of the central field. Available in colour
online.

Artificial feature recognition 4629
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It is found that, for a given object, depending on type, its linearity can be

represented by one of the following three object features (measures):

1. Length/width of object: in pattern recognition, the length/width of a pixel-

based object can be measured by the fraction of the eigenvalues of the object-

derived covariance matrix, with the larger eigenvalue being the numerator

(Baatz et al. 2004). As segmentations produce raster polygons rather than

polygons in free shape, the length/width of an object from segmentation can

be measured using the same method as well. However, this measure is not able

to capture the linearity of different objects. Only the linearity of a fairly

straight object along a grid, like figure 2(a), can be well reflected by this object

feature. In contrast, the linearity of an actually linear object cannot be

reflected by this object feature when the object is curved to some degree.

2. Length/width of main line: the characteristics considering the objects’ main line

are superior in recognizing curved linear objects in the shape of figure 2(b) or

likewise. The main line of an object can be determined by its skeleton. In

operation, the creation of the skeleton can be implemented based on a

Delaunay triangulation (Worboys and Duckham 2004) of an object’s shape

polygon. The skeleton is then obtained by identifying the mid points of the

triangles and connecting them. Meanwhile, all the points can be classified into

branch point, connection point, and end-point, according to the number of

(a)

(c)

(b)

(d)

Figure 2. Four typical shapes of road objects. The upper two represent typical objects of
connection; the lower two represent typical objects of intersection. The thicker inner lines
represent the main lines. Available in colour online.

4630 J. Tian and D.-M. Chen
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neighbours of their corresponding triangle. Thus, the main line can be

reasonably represented by the longest possible connection of branch-points.

The other connected lines can then be ordered in the same manner as ordering

the streams in a basin/watershed. A typical object skeleton therefore consists

of one main line and some branches of first order and up. For more details,

refer to Baatz et al. (2004). The length of an object’s main line is simply the

sum of the distances between the nodes. To calculate the length/width of the

main line, the width of an object can be estimated by the average height of all

triangles crossed by the main line. This object feature captures the linearity of

a linear object of free direction.

3. Length/width of main line plus long branches of first order: although recognized

as typical road intersections, the objects shown in figure 2(c) and figure 2(d)

are not simply linear. More rigorously, they should be regarded as structured

objects consisting of linear object components. The main line may not solely

be able to reflect their linear nature. A new feature is therefore developed,

taking into account not only the main line but also the long branches of first

order. For a given object, this feature needs to measure the length of the main

line LMain, the total length of all the long branches of first order L1
Branch, and

the object area A. The feature value thus equals (LMain + L1
Branch)2/A. There is

one long branch and two long braches for the highlighted objects in figure 2(c)

and figure 2(d), respectively.

For a given object, the examination of all of the above three object features helps

determine more confidently whether it is linear or not. An object should be defined

as a meaningful road with strong confidence if it has a relatively large value for at

least one of the three associated features.

3.1.3 Residential buildings with simple roof structures. From the point view of

remote sensing, most often a building is actually visible as the building’s roof. In

general, building roofs can be very complex and comparatively have the least

regularity in terms of shape, size, and structure. Gruen and Dan (1997) classify the

models of building roofs according to their number of ridge points. Only buildings

with simple roof structures are covered in this research. More particularly, the

majority of the buildings investigated have a rectangular footprint. The roofs are flat

or have one or two ridge points. Due to the diversity of building roofs, the definition

of a building’s meaningfulness is purely based on the comparison of the desired

model of the building and the actual object primitive prepared by the segmentation.

It is decided here that an object taking the place of a building is defined as

meaningful only if the object has a high percentage of mutual overlap with the

desired model (e.g. digitized polygon).

3.2 Assessment of segmentations

A multi-resolution segmentation with a certain set of parameters may be good at

providing meaningful objects for one feature class but poor for another. Regarding

the definition of meaningful objects, the segmentations should be wisely evaluated

according to the feature class of interest. Our strategy is to compare the collection of

the relevant and meaningful objects to a feature class of interest with its

predetermined polygons of reference. An object is regarded as relevant to a feature

type if its majority area falls in the corresponding reference polygons; on the other

Artificial feature recognition 4631
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hand, the meaningfulness of the object is assessed by the principles proposed in §3.1.

For a feature class of interest on a given image, the reference polygons can be

obtained from other resources or by digitization.

The method of assessment based on an overlay analysis is illustrated by figure 3.

The black rectangle underneath represents one reference polygon of the feature

class investigated. The forward white rectangles represent the relevant and

meaningful objects to the feature class. The grey portions labelled Aoverlap are the

overlapping areas, while the portions labelled Adiff are the areas mismatching.

Normally, there should be only one meaningful object supposed to take the place

of the background feature when it is intensive (e.g. buildings). If a feature is

spatially extensive (e.g. roads), it is likely to be covered by multiple relevant and

meaningful objects.

A measure was developed to quantify the goodness of the segmentation. The

measure, termed Gs, takes into account both the overlapping areas and the

mismatching areas. A perfect collection of the meaningful objects will yield a Gs

value of 1 from equation (8). At the other extreme, if there are no meaningful objects

overlapping with the reference polygons, Gs will yield 0. In all other cases, the value

will be in between.

Aoverlap~
X

A
overlap
i ð6Þ

Adiff~
X

Adiff
i ð7Þ

Gs~
Aoverlap

Arefer
:eAdiff=Arefer

ð8Þ

Overlay analysis plays a key role in obtaining the overlapping area and the

difference area required by calculating Gs. Given two layers of vector polygons, one

the working layer and the other the identity layer, the analysis first computes their

geometric intersection. The intersected polygons on the working layer will then be

split into more portions. In the output, the portions common to the two layers will

become new polygons and inherit the attributes including their ‘area’. Particularly in

this research, the vector from the segmentation and the vector of reference serve as

the working layer and the identity layer, respectively. When a new polygon of the

overlapping portion is common to a relevant and meaningful object and a reference

polygon, the area of the new polygon is counted as an overlapping area Aoverlap.

Simultaneously, the difference between the inherited area of the original meaningful

polygon and the area of the new polygon is reasonably counted as a difference area

Figure 3. Sketch for the overlap analysis.

4632 J. Tian and D.-M. Chen
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Adiff. It should be pointed out that Adiff also includes the area of the portions that

are part of a reference polygon but not covered by any meaningful object from the

segmentation result.

4. Experiment design

4.1 Experimental-data description

The IKONOS-2 satellite has become an important resource providing high-

resolution space images to the remote-sensing community. Two IKONOS satellite

images were employed in this research to perform experiments. One has a spatial

resolution of 4 m, covering the western part of Kingston, Ontario, Canada. Six sites

were subset from this image, with three representing road areas and the other three

representing areas of sports field. As the 4-m resolution does not seem fine enough

to detect either residential or commercial buildings, a Pan-sharpened multispectral

IKONOS image with 1-m resolution was also employed, covering part of San

Diego, California. On this image, individual buildings could be visually recognized.

Two sites of residential buildings were subset from the image. For each feature type,

one site is used for testing the methodology, and the remaining sites are used for

validating the findings from the test site.

Both IKONOS images have four spectral bands: blue, green, red, and near

infrared. The spectral values in each band are in 11 bits.

4.2 Segmentations based on a series of parameter settings

A set of parameters need to be specified in the algorithm of multi-resolution

segmentation. The choice of plane four-neighbourhood or diagonal eight-

neighbourhood determines the definition of neighbourhood for most merging-

based segmentations. Baatz et al. (2004) suggest that the segmentation be

performed in the manner of the plane four-neighbourhood on a high-resolution

image. With respect to this, there are still four parameters open to specification:

Wshape, Wcmpct, Wsmooth (form-related parameters), and Sp (size-related scale

parameter). As Wcmpct and Wsmooth are trade-off parameters totalling 1, the

specification of only one of the two is needed. Thus, an image will be segmented

differently based on different settings of three independent parameters. If Wshape is

set to be zero, this means that there will be no shape information considered when

segmenting. The sub-parameters of Wshape (refer to equation (3)), Wcmpct, and

Wsmooth can consequently be neglected in that case because they will not impact

the segmentation result. To the contrary, if Wshape is set to be non-zero, this means

that shape information will be taken into account. The volume of Wshape indicates

how much the segmentation will emphasize the shape. Four values were sampled

to explore the impact of Wshape on the segmentation: 0.25, 0.5, 0.75, and 0.9.

Notice that the largest value is not 1 because no spectral information will be

considered if that is the case. It is understandable that the segmentation will not

make sense if no spectral information is considered at all during the course of

segmentation. Each non-zero setting of Wshape requires a sub-setting of Wshape and

Wcmpct. Five values (0, 0.25, 0.5, 0.75, and 1) were chosen for Wcmpct covering the

range of 0–1 with an interval of 0.25.

In total, there are 21 different settings of form-related parameters. Among them,

only Setting 0 does not take any shape information into account. All the other 20

settings are summarized in table 1, where the columns and the rows show the

Artificial feature recognition 4633
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experimental values for Wshape and Wcmpct, respectively. All 21 settings were applied

to the subset images. Under each setting, the images were segmented on 70 scale

levels, with the corresponding scale parameters of Sp ranging from 0 to 145. Thus, a

framework was built up to facilitate tracking the quality of the segmentations based

on the different parameter combinations.

All the segmentations were performed in eCognition. This software allows for

editing protocols that enable a suite of processes to be completed in just a few

batches. The multi-resolution segmentation results can be directly exported as vector

data in a GIS-compatible format, such as shape file. This process could be made

much more efficient by editing and using protocols. It is found that eCognition has

the disadvantage of exporting image polygons without any spatial reference

information attached. The georegistration of a shape file exported from eCogntion

has to be completed in a GIS package, e.g. ArcGIS. A customized tool was

developed in the ArcGIS environment to programmatically assess the segmenta-

tions’ quality.

5. Result analysis and discussion

5.1 Sports field-oriented segmentation

Experiments were performed on one of the three areas of sports field subset from

the original 4-m IKONOS image. Figure 4 exhibits the impact of the settings on

the segmentation quality for the central field within the tracks. It can be seen that

most of the settings have the capability of producing fairly good results. The best

segmentation results achieved from the different settings are on a similar quality

level (with Gs about 0.9 or above). The segmentation quality does not continuously

change as the scale parameter increases. When the scale parameter is small, the

corresponding segmentation quality appears to be 0, indicating that there are no

meaningful objects to represent the central field at all yet. Most of the changing

lines climb in one or two cascades up to their maximum of about 0.9 in the vertical

axis. The maxima of all of the changing lines appear to be flat. After staying at the

maximum across some scale parameters, the changing lines then drop sharply

down to 0. From graph (a) to (d ) in figure 4, the importance of the shape is

increasingly emphasized. It was noticed that the segmentations under a setting of

higher Wshape reach their best at comparatively smaller scale parameters.

Moreover, the tops of the lines are consistently flat but shorter from (a) to (d ),

indicating that the optimal segmentations occur within a gradually narrower range

of scale parameter.

Table 1. Experimented parameter settings of Wshape and Wcmpct.

Shape
parameter

Parameter of compactness

0.00 0.25 0.50 0.75 1.00

0.25 Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
0.50 Setting 6 Setting 7 Setting 8 Setting 9 Setting 10
0.75 Setting 11 Setting 12 Setting 13 Setting 14 Setting 15
0.90 Setting 16 Setting 17 Setting 18 Setting 19 Setting 20

There is one more setting with a shape parameter of 0.

4634 J. Tian and D.-M. Chen



D
ow

nl
oa

de
d 

B
y:

 [Q
ue

en
's

 U
ni

ve
rs

ity
] A

t: 
16

:4
3 

3 
O

ct
ob

er
 2

00
7 

Table 2 summarizes the ‘goodness’ values of the best segmentations under all the

settings. The corresponding scale parameters are also included in the table. It seems

fair to say that, for sports fields, the segmentations with a higher Wshape are more

efficient in achieving a high-quality result. The reason is that the segmentations

associated with a higher Wshape produce comparable results with smaller scale

parameters, which allow for fewer merges. Hence, based on consideration of both

segmentation quality and computing efficiency, the parameter setting 16

(Wshape50.9 and Wcmpct50) is regarded as the ideal one to delineate the central

field within the tracks. The same setting was applied to the other two subsets of

sports field at the same scale parameter of 18. The segmentation results (figure 5(d )

and 5(f )) are very good, thus supporting the strength of the setting and the chosen

scale parameter.

5.2 Road-oriented segmentations

Similarly, a series of experiments was performed on one of the three road area

(figure 6(a)) subsets from the 4-m IKONOS image. Figure 7 summarizes the impact

of the different settings on the segmentation quality for the roads. From graph (a) to

Table 2. Goodness of the best segmentations for the sports field and their associated scale
parameters.

Shape
parameter

Parameter of compactness

0.00 0.25 0.50 0.75 1.00

Gs SP Gs SP Gs SP Gs SP Gs SP

0.25 0.95 55 0.95 50 0.91 49 0.95 55 0.96 55
0.50 0.91 41 0.95 39 0.91 39 0.91 38 0.95 35
0.75 0.95 26 0.91 23 0.92 18 0.90 28 0.92 17
0.90 0.95 18 0.92 12 0.93 10 0.93 14 0.90 13

Figure 4. Quality of sports field-oriented segmentations against scale parameter.
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(d) in the figure, the associated importance of shape is increasingly emphasized.

Regardless of the change of settings, all the changing lines exhibit a unimodal

distribution with the lower ends and most of the upper ends touching the x-axis.

This indicates that scale parameter with very small or very large values are not

effective in producing meaningful road objects. Very small scale parameters allow

only the creation of the objects in size of pixel level; apparently, these objects are not

representative of the roads in terms of size or shape. Contrarily, at the other

extreme, the large scale parameters are intended to form such large objects that
often include features of different types into one object due to relatively large

tolerance of heterogeneity changes. The existence of the modes is somewhat in

(a) (b)

(c) (d)

(e) ( f)

Figure 5. Segmentation results of the three subsets of sports fields with Wshape of 0.9 and
Wcmpct of 0 at a Sp of 18. The image sizes are (a) 51652, (b) 56652, (c) 53657. Image (a) is
overlaid with its reference polygon in yellow. The meaningful objects segmented for the
central field are highlighted in red.
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parallel with the hypothesis that one feature type is best addressed at a certain scale

or within a certain scale range.

The six groups of segmentations shown in figure 7(a) have a relatively weak

emphasis (Wshape50 or 0.25) on the importance of shape. Notably, the ‘belt’ of the

high–low range becomes narrow at scale parameters of around 30, forming a ‘neck’

area. Away from the area, the belt spreads out, reflecting a stronger impact of

(a) (b)

(d)(c)

( f )(e)

Figure 6. Original IKONOS subsets of roads (left) and the segmentation results (right) at Sp

of 23, Wshape of 0.75, and Wcmpct of 0.25. The image sizes are (a) 1516150, (b)1486138, (c)
1716175. The image (a) is overlaid with the corresponding reference polygons. The
meaningful objects segmented for the roads are highlighted in red.
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Wcmpct on the segmentation quality. When the importance of shape and spectral

information is emphasized on a basis of half and half, as in figure 7(b), the

segmentation with a Wcmpct of 0 generates the best result overall. It can be seen

that a ‘neck’ area still exists, although it seems less significant. The ‘neck’ areas

are recognized as being informative. They imply a steady range of scale

parameters, where the segmentation quality is not very sensitive to the different

settings.

When the importance of shape is weighted over half, as in figure 7(c) and (d ),

there no longer exists a ‘neck’ area. However, a trend appears clearer that the

segmentation quality for road decreases as the associated Wcmpct increases.

Especially in graph (d ), the trend is unexceptionally followed. Also, Setting 19

and Setting 20 have their changing lines lying on the x-axis, implying a total failure

of producing any meaningful object for the feature class of road.

From table 3, the segmentations with Wshape of 0.25 produce comparatively the

best results with the highest average of the goodness values. The segmentations with

Wshape of 0.5 produce slightly worse results. The segmentations with Wshape of 0.75

Figure 7. Quality of the road-oriented segmentations against the scale parameter.

Table 3. Goodness of the best segmentations for the roads and their associated scale
parameters.

Shape
parameter

Parameter of compactness

0.00 0.25 0.50 0.75 1.00

Gs SP Gs SP Gs SP Gs SP Gs SP

0.25 0.47 22 0.47 19 0.47 37 0.48 38 0.45 32
0.50 0.46 24 0.44 25 0.42 39 0.42 60 0.38 44
0.75 0.47 25 0.49 23 0.42 20 0.29 32 0.05 29
0.90 0.39 14 0.35 20 0.14 23 0.000 N/A 0.000 N/A
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produce relatively good results when Wcmpct is low but very poor results when

Wcmpct is high. In contrast, the segmentations with Wshape of 0.9 result in the worst.

All in all, the best segmentation occurred at a scale parameter of 23 with Wshape of

0.75 and Wcmpct of 0.25. The same setting was applied to the other two image subsets

of roads (figure 6(c) and 6(e)), and their segmentation results are shown by

figure 6(d) and 6(f), respectively.

5.3 Building-oriented segmentations

Buildings differ very much from one another in terms of roof structure and colour.

The building roofs investigated in this research have a rectangle-like footprint, and

most of them are homogeneous in colour. As can be seen in figure 8, all the changing

lines are basically unimodal. This indicates that the segmentation under any of the

settings increases its quality for building when the scale parameter increases, until

the value corresponding to the curve top is reached. From there to the right, the

segmentation quality decreases eventually to 0 when the corresponding scale

parameter is quite large. Again, from (a) to (d) in figure 8, the shape is increasingly

emphasized when segmenting. Overall, it is noticed that the best segmentation

quality associated decreases from (a) to (d ).

Table 4 summarizes the best segmentations associated with the designated

parameter settings for the buildings. The best segmentation occurred when no

shape information was considered, and the scale parameter was 43. Examination of

the segmentation result shows that most of the buildings are well represented by

polygons in shapes close to what are desired (see the left-hand side part of figure 9).

For building-oriented segmentation, shape information seems useless. However,

closer and more specific examination reveals that one building was not properly

Figure 8. Quality of the building-oriented segmentations against the scale parameter.
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represented by any of the polygons from the segmentation. The building is

recognized as heterogeneous in colour and not having strong contrast with the

surrounding areas. Although not so clear, the building roof actually has two ridges,

so when there is sunshine casting from an angle, the different portions of the roof

will be shaded differently from light to dark. It was found that this building could be

better represented by taking shape information into the segmentation (see the right-

hand side part of figure 9).

It is commonly agreed that building roofs vary greatly in colour, shape, and

structure. In other words, building roofs have a much lower regularity compared

with sports fields and roads. Hence, the optimal parameters found for building-

oriented segmentation in one test image may not hold in another that has quite

different building roofs in size or structure. For example, figure 10 shows the

segmentation result of the other subset from the 1-m Pan-sharpened multispectral

IKONOS image when the scale parameter is specified as 43 and the shape factor is

set to be 0 (the same setting as that in figure 9). Only a limited number of meaningful

building objects are provided.

Table 4. Goodness of the best segmentations for the buildings and their associated scale
parameters.

Shape
parameter

Parameter of compactness

0.00 0.25 0.50 0.75 1.00

Gs SP Gs SP Gs SP Gs SP Gs SP

0.25 0.45 37 0.45 40 0.31 43 0.31 37 0.43 38
0.50 0.44 32 0.47 30 0.41 35 0.36 30 0.32 23
0.75 0.41 30 0.36 30 0.38 31 0.33 29 0.33 23
0.90 0.31 18 0.31 20 0.22 17 0.26 20 0.36 13

Figure 9. Building-oriented segmentation. The left part shows the segmentation result of the
middle image (716106) at Sp of 43 with no shape information considered; the lower right part
shows the segmentation result for the pointed building at Sp of 20 with Wshape of 0.9 and
Wcmpct of 0. Available in colour online.
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6. Concluding remarks

The definition of meaningful objects plays a crucial role in building the framework

of finding an optimal segmentation for a given type of object. The meaningfulness of

an object to three artificial feature types has been accordingly defined in this study.

The segmentation quality can thus be evaluated by comparing the meaningful and

relevant objects segmented with the corresponding reference polygons. An

assessment method has also been proposed, and a series of experiments have been

demonstrated.

Artificial objects include not only intensive features (e.g. buildings) but also

extensive features (e.g. roads). An intensive feature should ideally be represented by

only one single meaningful object taking the place of the feature, whereas an

extensive feature will likely be represented by multiple objects meaningful to the

feature class. Among the three types of objects investigated, sports fields have

comparatively the strongest regularity and uniqueness in terms of shape. They are

usually recognized by their elliptical shapes and their great colour contrast with the

surrounding area. It was found that a high-quality segmentation result for sports

field is not so dependent on the setting of the form-related parameters. No matter

how the form-related parameters change, the multi-resolution segmentation

Figure 10. Building-oriented segmentation of the test building image subset (75670) by
applying the suggested optimal parameter used in figure 9 (left). Available in colour online.
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algorithm seems capable of producing comparable results. Yet, the best segmenta-

tion with different form-related parameters may occur with different scale

parameters. While ensuring high quality, the ideal segmentation should also adopt

a relatively small scale parameter as it will allow fewer merges and save computing

time. The experiments suggest that a Wshape of 0.9 and a Wcmpct of 0 may be

somewhat optimal to segment a 4-m IKONOS multi-spectral image for sports fields.

Compared with sports fields, roads have less, but still strong, regularity. Roads

are characterized by their linear and networking nature, making the conceptual

models of roads less straightforward to build. Three object features were seen to be

valuable in defining meaningful road objects. For the road-oriented segmentations,

the importance of shape (Wshape) should not be emphasized too strongly. Small or

medium values (less than or equal to 0.75) of Wshape were found to be suitable to

produce fairly good segmentation results for road. Meanwhile, the importance of

compactness (Wcmpct) should be kept small in most of the cases. The best

segmentation occurred at the scale parameter of 23 with Wshape equal to 0.75 and

Wcmpct equal to 0.25. The success of the segmentations of other road image subsets

using the same set of parameters supports its robustness.

Buildings are much more complex. Two blocks of simple residential buildings

were examined in this research. The experiments imply that a building-oriented

segmentation should mainly rely on the spectral information contained in an

IKONOS image. However, for those buildings with a roof of heterogeneous colour,

the importance of shape should be fully emphasized. The determination of an

optimal scale parameter is subject to the size of the buildings of interest. The optimal

parameters found for one group of buildings may be of limited value for another

with a very different size or structure. The multi-resolution segmentation for

buildings should be performed, based on a close examination of the buildings’ sizes,

roof structures, and colour variances.

In summary, the trend in the segmentation quality changes helps researchers

narrow down their range of the parameters’ specification. Although the robustness

of the suggested optimal parameters needs more examination by a significant

number of tests, their usefulness has been preliminarily demonstrated. The proposed

framework of finding optimal segmentation to a feature class of interest may

practically aid in artificial feature recognition from high-resolution satellite images.

The relationship between the image resolution and the optimal parameters,

especially the scale parameter, should be further examined in the future work.
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