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Abstract 
Unsupervised change detection techniques have been widely 
employed in the remote-sensing area when suitable reference 
data is not available. Image (or Index) differencing is one of the 
most commonly used methods due to its simplicity. However, 
past applications of image differencing were often inefficient in 
separating real change and noise due to the lack of steps for fea-
ture selection and integration of contextual information. To ad-
dress these issues, we propose a novel unsupervised procedure 
which uses two complementary features, namely luminance 
and saturation, extracted from multispectral images, and com-
bines T-point thresholding, Bayes fusion, and Markov Random 
Fields. Through a case study, the performance of our proposed 
procedure was compared with other three unsupervised change-
detection methods including Principle Component Analysis 
(PCA), Fuzzy c-means (FCM), and Expectation Maximum-Markov 
Random Field (EM-MRF). The change detection results from our 
proposed method are more compact with less noise than those 
from other methods over urban areas. The quantitative accu-
racy assessment indicates that the overall accuracy and Kappa 
statistic of our proposed procedure are 95.1 percent and 83.3 
percent, respectively, which are significantly higher than the 
other three unsupervised change detection methods. 

Introduction
There is a growing interest in monitoring land-use/land-cover 
change as it provides up-to-date information for many appli-
cations. Employing remote-sensing (RS) technology has been 
critical for keeping track of land-use/land-cover transition at 
a variety of spatial scales (Rogan and Chen, 2004; Hussain et 
al., 2013). Compared with traditional monitoring methods 
(such as field surveying), RS-based change detection can bet-
ter allow for processing large areas, producing quantitative re-
sults and offering repeatable procedures (Coppin et al., 2004).

Numerous state-of-the-art approaches have been developed 
to analyze RS imagery for change detection. These methods 
are usually categorized into supervised and unsupervised 
methods, according to the availability of adequate reference 
data (Bruzzone and Prieto, 2000; Bruzzone and Prieto, 2002; 
Fernandez-Prieto and Marconcini, 2011). The advantage of 
supervised change detection is the capability of labeling the 
type of change (the detailed “from-to” information) based on 
given training samples. However, the generation of suitable 
multi-temporal reference data to characterize all the classes 
is usually a difficult task, especially for historical images (Lu 
et al., 2004). Compared with supervised methods, unsuper-
vised ones can be much more cost-effective since no reference 
data is required. In spite of being unable to offer the informa-
tion on categories of land transition, the changed/no-change 
detection is often acceptable for many practical applications 
(Hussain et al., 2013).

Image differencing (or index differencing) is one of the 
most commonly used methods for unsupervised change 
detection (Bruzzone and Prieto, 2002; Rogerson, 2002; Lu et 
al., 2004). Compared with other unsupervised approaches, 
such as Principle Component Analysis (Deng et al., 2008) or 
clustering algorithms (Bruzzone and Prieto, 2000), image dif-
ferencing is much cheaper computationally, and it is easier to 
interpret its results (Lu et al., 2004; Hussain et al., 2013).  The 
basic idea for image differencing stems from the fact that the 
physical status of land area can be characterized by certain 
feature indices derived from the remotely sensed data; when 
we analyze targeted features from bi-temporal images, the 
larger its deviating values from means of unchanged class 
appear to be, the more likely it is that change has occurred in 
the corresponding area. The useful features for image differ-
encing can be defined as digital number in a single spectral 
band, vegetation indexes (Singh, 1989), principle component 
(Deng et al., 2008), or texture index (Tomowski et al., 2010). 
Feature-differencing values of interested areas are usually 
passed to a thresholding strategy to separate “no-change” and 
“changed” class for the final result map.

However, image or index differencing often exhibits incon-
sistent performances, as it makes its decision relying only on 
single feature analysis. For most urban change-detection tasks, 
when single feature differencing is applied, we may have (a) 
real change information corresponding to transition between 
different land-cover types which are usually of interest, and 
(b) noisy change identification due to other factors, such as 
seasonal growth or local illumination variance. In the compli-
cated practical scenes, clusters of real and noisy changes are 
sometimes mixed together in the feature space; thus, we are 
unable to completely separate them by using a single thresh-
olding value. In this sense, fusion techniques merging multiple 
difference images have been introduced to improve detection 
accuracy (Le Hégarat-Mascle and Seltz, 2004; Du et al., 2012), 
since different features might offer complementary informa-
tion about the patterns to be classified (Kittler et al., 1998) .

The second issue with traditional image differencing is 
that global analysis of difference image fails to account for 
local spatial information influencing the reliability of final 
result. To address this issue, one solution is incorporating the 
direct difference of certain texture indices for change detec-
tion (Li and Leung, 2002; Tomowski et al., 2010). Another 
method is applying Markov Random Fields (MRFs) models 
(Bruzzone and Prieto, 2000; Kasetkasem and Varshney, 2002; 
Zhang et al., 2007; Benedek and Szirányi, 2009), which has 
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experimentally demonstrated its advantages in exploiting the 
spatial-contextual information contained in the difference 
image because of its well-established mathematical founda-
tion. These models assume that the feature value at each 
pixel relies on the values of only its neighboring pixels, and 
can simultaneously ensure the consistency of the class labels 
with local extent and spatial smoothness through interaction 
between neighboring pixels (Benedek and Szirányi, 2009).

Based on the aforementioned remarks, we propose a novel 
methodology for unsupervised change-detection methodology 
relying on the combination of multiple features. The general 
scheme of proposed method consisted of five steps: 

1. automatic radiometric normalization for preprocessing; 
2. two relatively independent feature extraction, i.e., 

luminance and saturation, are chosen to perform the 
specific urban change-detection work; 

3. the T-point algorithm is conducted to get reasonable 
thresholding values for each feature image; 

4. Naïve Bayes is then adopted to combine two feature 
classification results based on the probability density 
function for each class; and 

5. as the last step, MRFs framework is responsible for in-
tegrating spatial-contextual information and generating 
the final map.

This paper is organized into four parts. In the second sec-
tion, we mainly address the detailed description of the 
steps involved in our proposed procedure. In the section on 

experimental result, the outcomes of exploring single feature 
are presented to show their relationship first; both qualitative 
and quantitative comparison between our method and other 
three previous unsupervised approaches are presented after; the 
final section discusses our work, and a conclusion is presented. 

Proposed Method
The overall schema for the proposed procedure is given in Fig-
ure 1. Each component is described in detail in the following.

Radiometric Normalization
Reflectance properties of pixels are affected by various il-
lumination or atmospheric effects, requiring radiometric 
normalization (RN) before pixel-by-pixel comparison. The 
method of Pseudo-Invariant Feature (PIF) (Sohl, 1999; Im and 
Jensen, 2005) has been commonly used for RN in the previous 
research, which builds a regression relationship of two scenes 
based on the “no-change” pixels from manual sampling. How-
ever, from our point of view, the manual selection of Pseudo-
Invariant pixels goes against the principle of unsupervised 
techniques. In this paper, a two-fold regression procedure is 
introduced to automatically accomplish relative radiometric 
normalization: first we apply Image Regression (IR) (Yang and 
Lo, 2000) to estimate the linear regression relationship on the 
pixels of whole image, and get the initial difference image; 
then we implement T-point thresholding to separate the un-
changed set from the differencing image obtained by the first 
regression, and finally we derive the final linear regression 
equation based on the unchanged pixels after thresholding. 

HSL Color Space and Feature Generation
HSL (or HSI, HSV) color representation, an alternate to others 
(e.g., RGB color model), is considered more intuitive to human 
perception than others, and has been applied for many previ-
ous image processing tasks (Zhang and Wang, 2000; Hu et 
al., 2005; Dhandra et al., 2006). More importantly, using such 
color representation can effectively reduce inter-band correla-
tion (Gillespie et al., 1986; Lei, 1999) through separating three 
relatively independent parts: luminance, hue, and saturation.

Luminance (“L”) is the brightness descriptor, which is 
utilized to represent the total amount of lightness. Hue (H) 
and saturation (S) jointly describe the color of an image: “H” 
represents the dominant wavelength in the spectral distri-
bution; “S” represents a measure of the purity of the color 
(Dhandra et al., 2006). Hue value is often very unstable when 
the saturation is low (Cheng et al., 2001; Dhandra et al., 
2006), probably leading to numerous errors with any type 
of thresholding strategy because of the inconsistent shape of 
the histogram. Accordingly, only saturation is selected in our 
method to represent color information.    

There are two other similar methods of generating color 
features for options, (hue-saturation-intensity (HSI) and hue-
saturation-value (HSV) color models. HSI is considered to 
have the highest correlation, because its saturation is defined 
without being standardized; the difference between HSL and 
HSV is that a decrease in HSL in saturation results in a loss of 
color strength while maintaining the same visual brightness; 
whereas in HSV a reduction in saturation causes the visual 
brightness to increase. From our point of view, HSL is more 
suitable than HSV for the proposed modal because there is less 
correlation between the components, since a good indepen-
dence level among features is the basic assumption for the 
subsequent Bayes fusion. 

Image Differencing and Thresholding
Direct pixel-by pixel differencing result is implemented in 
our procedure instead of traditional absolute differencing 
(Bruzzone and Prieto, 2000; Le Hégarat-Mascle and Seltz, 
2004), in case of the issue of asymmetrical change occurring 

Figure 1. Schematic representation of the proposed procedure.
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in many practical scenes. Differencing values can be negative 
or positive, producing two tails in the histogram (Figure 2). 
We divide the histogram curve of difference image into left 
and right side by highest peak of histogram. For each side, the 
T-point algorithm (Coudray et al., 2010) was used to deter-
mine the change threshold. The T-point algorithm, developed 
specifically for unimodal histogram through finding the best 
fitting lines for each part, has been proved to be more effective 
for urban areas based on our previous tests (Chen et al., 2014). 
It is easy to find two decision boundary, i.e., one negative 
threshold (NT) and one positive threshold (PT), separating the 
feature space into three classes: negative change (NC), positive 
change (PC) and unchanged class (UC).  

Bayes Fusion
Data fusion is applied in order to fuse the two class maps cor-
responding to luminance and saturation features after apply-
ing the two-sided T-point algorithm. Generally, there are two 
common types for fusing two independent data band: the first 
type is based on the crisp output produced by each dataset, 
such as majority voting or “and/or” operation; the second 
type produces the fuzzy output for each band first, and then 
combine them following some rules, which is often viewed as 
a better way to handle uncertainty and imprecision (Grant et 
al., 2008). The Bayes fusion in our proposed method belongs 
to the second type.

For Bayes fusion, there are nine possible cases lk for the joint 
labels (L) based on three change results (negative change nc, 
positive change pc and no change uc) for each feature. Let a 
vector x = (xlu,xsa) denote the signature of a pixel, where xlu is 
its luminance value, and xsa is its saturation value. Since the lu-
minance and saturation bands are approximately independent 
as the property of HSL color space, according to Naïve Bayes fu-
sion theory (Kuncheva, 2004), the expression for the combined 
probability that L will take on x(xlu,xsa) can be written as:

p(L=lk|x) p(xlu|L=lk)p(xsa|L=lk)*p(L=lk) (1)

where p(xlu|L=lk) and p(xsa|L=lk) are posterior probability 
conditioned on the combined class lk, p(L=lk) is the priori 
probability function based on occurrence of lk. As luminance 
and saturation are independent with each other, Equation 1 
can be written as:

p(L=lk|x) p(L=lk)*p(xlu| i(lu))p(xsa| i(sa)) (1)

where p(xlu| i(lu)) and p(xsa| i(sa)) are posterior probability 
given on the class based on each separated feature. The final 

change-detection result of pixel  is assigned to the class that 
maximizes the discriminant function (Equation 2). For poste-
rior probability, we can model it by defining the probability 
density functions (PDFs) for each class; for the component of 
prior probability and the combined probability for both pos-
terior and prior probability, a Markov-based approach will be 
applied to give optimal estimations. These two components 
are discussed respectively in the following two subsections.

Modeling Probability Density Functions (PDFs) 
It is usually easy to define the PDFs of “no-change” class (by 
using normal distribution with =0 since we have normalized 
every original band), while modeling “change” class provides 
a challenging task as the nature of the changes is unknown. To 
define normalized PDFs for each class, we follow the previous 
work done by Le Hégarat-Mascle and Seltz (2004) and make 
some modifications for our two-sided thresholding scene. 
Several properties should be met for our specific application:
 1. When the absolute values of feature index values 

increases, p(x| nc) and p(x| pc) increases, p(x| uc) 
decreases;

 2. The highest probability density for a class, 
p(x=xmin| nc), p(x=xmax| pc) and p(x=0| uc) should be 
equal to 1 after normalization, where xmin is the x value 
of the first non-zero point in the histogram of difference 
image, xmax is that of the last non-zero point;

 3. p(x=NT| nc) and p(x=NT| uc), p(x=PT| pc) and 
p(x=PT| uc) should be equal to each other, guaranteeing 
the probabilities of dominated class in its own region 
are larger than those in other classes, where  is the 
negative threshold,  is the positive threshold.
The distribution of uc can be given by (Le Hégarat-
Mascle & Seltz, 2004):

 
( )p x

y
uc

uc

| { }ω =
−

exp
2

22σ̂  
(3)

where ˆuc can be obtained by estimating the standard devia-
tion of all the pixels in the unchanged class. For the probabil-
ity of density of pc and nc, we used a normalized sigmoid for 
each, which has the advantage of being an increasing function 
(Le Hégarat-Mascle & Seltz, 2004). 

Markov Random Fields Framework
Markov Random Fields (MRFs) assumes that the prior prob-
ability of each pixel is uniquely determined by its local 
conditional probabilities. We define the neighbor system of 
the pixel x with coordinates (s,t) as a first-order spatial neigh-
borhood N(s,t)={(±1, 0),(0, ±1)}. The prior probability for pixel 

Figure 2. Illustration of two-sided T-point algorithm applied in the proposed technique.
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x (s,t) belonging to a certain class li is only dependent on its 
neighborhood N(s,t), and can be calculated as:

p L l p L l L
Z

U L l Ls t i s t i N s t s t i N s t, , , , ,(( ) ( ) ( ) ( ) (=( ) = =( ) = − =| exp |
1

))( ))  (4)

where U(L(s,t) =li|LN(s,t)) is the Gibbs energy function for priori 
probability at the pixel (s,t), and Z is a normalizing factor Z 
= 1/ li∈L(s,t)p(L(s,t) = li). U(L(s,t) = li| LN(s,t)) can be characterized 
by the agreement in class labels between each pixel and its 
spatial neighbor by Kronecker delta function (Bruzzone and 
Prieto, 2000). The optimal label  can be obtained when the 
sum of energy function of priori and posterior probability 
components over the all the pixels reaches the minimum. We 
apply a widely-used optimization algorithm, Iterative Condi-
tional Modes (ICM) (Bruzzone and Prieto, 2000; Zhang et al., 
2007; Li et al., 2011), to minimize the energy term.

Final Map Generation
As the result, we can get a nine-class classification result after 
MRFs modeling. There is no reference data to further confirm 
the detailed changed type (“from-to” information) for these nine 

subclasses. However, based on the assumption that only the 
overlap of luminance and saturation change can be the change 
that we are interested in, an unsupervised grouping strategy 
(Table 1) is used to get the final “change/no-change” results.

Experiments and Results 
Study Data and Area
Our study area covers the main part of the City of Kingston 
located in Eastern Ontario, Canada where the St. Lawrence 
River flows out of Lake Ontario. The data consisted of two co-
registered bi-temporal images and were respectively acquired 
by the Landsat-5 Thematic Mapper (TM) sensor in August 1990 
and the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 
sensor in August 2001 (Plate 2a and 2b). With about 120,000 
urban population, the study area has both urban and rural 
land-cover types. The urban area is located in the southern 
part of the study area adjacent to Lake Ontario. The northern 
part of the study area is mainly composed of agriculture land 
along with open space and forest. The dominated land-cover 
types include “built-up area,” “grass,” “forest,” and “water.” 
From 1990 to 2001, the City of Kingston has experienced a 
moderate growth of urban land expansion and vegetation 
change, making it an ideal case for testing the effectiveness of 
the proposed procedure for urban change detection.

Exploring Luminance and Saturation Bands for Urban Land-Cover Change 
Detection
The key technique for the proposed procedure is the fea-
ture selection. The ideal feature groups should have perfect 
complementary attributes that can exclude “noisy changes,” 
while remaining most of real changes that we are interested 
in.  Most urban change detection only focuses on the change 

 (a) (b) (c)

 (d) (e) (f)

Plate 1. Examples of detection results for a small subset from steps in the proposed procedure: (a) the subset image acquired in 1991, 
(b) the subset images acquired and 2001, (c) the detection result from thresholding the luminance band, (d) the detection result from 
thresholding the saturation band, (e) the detection result after Bayes fusion of thresholding results in (c) and (d), and (f) the detection 
result after MRF smoothing the results in (e). Changed pixels are highlighted as red.

TABLE 1. GROUPING STRATEGY FOR FINAL CHANGE-DETECTION MAP BASED ON THE 
PRIOR ASSUMPTION THAT THE CHANGE ONLY OCCURS WHEN BOTH SATURATION AND 

LUMINANCE CHANGE

Subclass Names

“Change class”: l1( pc(lu), pc(sa)), l2( nc(lu), pc(sa)),
l3( pc(lu), nc(sa)), l4( nc(lu), nc(sa))

“No-change class”: l5( uc(lu), pc(sa)), l6( uc(lu), nc(sa)),
l7( pc(lu), uc(sa)), l8( nc(lu), uc(sa)),
l7( uc(lu), uc(sa))
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in land-cover types. They can be viewed as “real change” in 
this specific practical scene; change within one land-cover 
class is considered to be “noisy change” in our experiment.

Plate 1 shows single feature thresholding results after 
T-point algorithm and their fusion results for a small subset 
of the study area. The luminance image (Plate 1c) can detect 
most of the conversion between built-up area and other land-
cover types. However, it over-detects some unchanged built-
up area such as the region of ‘A’ in Plate 1c. Similarly, for 
saturation thresholding results (Plate 1d), there are some false 
detections such as the ‘B’ region, which are actually inter-
class vegetation changes. In addition, the saturation thresh-
olding result alone is likely to miss some important changes 
between built-up area and vegetation (such as ‘C’ region in 
Plate 1d). Plate 1e shows that the use of the strategy of Naïve 
Bayes for fusion can redetect some missed changes (such as 
‘C’ region) and exclude false changes (such as ‘A’ region and 
‘B’ region). For the last step, MRFs procedure allows detected 
objects to be more compact, and increases reliability of detec-
tion (Plate 1f).

Figure 3 is a box plot based on manual samples from dif-
ferent change of interest and noisy changes, to quantitatively 
confirm that luminance and saturation are complementary. 
There are five land cover types in our area of change: Built-up 

Area (B), Trees (T), Grass land (G), Barren land (A), and Water 
(W). Our change of interest is the transition between any two 
of these five classes, such as from Tree to Built-up Area (T-
>B). We selected five representative change types of interest 
in our study region for making box plot: A->B, T->B, G->A, 
G->T, W->G. For noisy change in our study area, we think 
they are mainly caused by local different reflectance (low 
reflectance to high reflectance, LR->HR), quality change of 
water (QC), or inter-class changes of vegetation (IC). 

For every type of change, a certain number of sampling 
pixels are collected according to visual interpretation. The 
statistics of sampling change classes on each feature band are 
shown together in the box plot; the positive (PT) and nega-
tive threshold (NT) obtained by T-point algorithm are given 
to show their relationship with those change classes. The 
boxplot indicates that luminance thresholding is good at 
identifying the noisy change IC and QC because more than 75 
percent of them fall within the “No-change” region; satura-
tion thresholding performs well in LR->HR; all the change 
types have at least 50 percent accurate detection rates for both 
two features. This result exhibits the potential of separating 
change of interest from all the changes by fusing the changed 
parts of luminance and saturation.

Figure 3. Box plots of feature [(a) luminance, and (b) saturation] statistics from sampled pixels, which consisted (1) 62 pixels from Barren 
land to Built-up area (A->B); (2) 33 pixels of Trees to Built-up area (T->B); (3) 57 pixels of Grass land to Barren land (G->A); (4) 55 pixels 
of Grass land to Trees (G->T); (5) 64 pixels of Water to Grass land (W->G); (6) 35 pixels of  to  (LR->HR); 
(7) 32 pixels of inter-class change of vegetation (IC); (8) 32 pixels of water quality change (QC). Positive Threshold (PT) and Negative 
Threshold (NT) were obtained by the T-point algorithm.
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Evaluation
The goal in this section is to quantitatively and qualitatively 
present comparative analysis of the proposed procedure with 
the other three common unsupervised change-detection meth-
ods from the literature, including two context-insensitive 
techniques (namely PCA and FCM) and one context-sensitive 
technique (namely EM-MRF).
 1. Principle Component Analysis (PCA)

Principle Component Analysis is based on transforma-
tion of the multivariate data to several uncorrelated 
bands. First, we merged the first three bands of two 
Landsat images into six bands and then applied PC 

transform (Deng et al., 2008). The changed information 
is usually considered to be in the second component. 
Since the histogram distribution of second band pres-
ents a unimodal pattern, two-sided T-point thresholding 
is used for separating changed and unchanged region.

 2. Fuzzy c-means (FCM)
Clustering is one of most common unsupervised tech-
niques for image classification. A powerful technique 
from clustering family called fuzzy c-means has been 
adopted for unsupervised change detection (Ghosh et 
al., 2009). This method is often considered to be more 
suitable than hard-membership approach for handling 

 (a) Landsat image in 1990 (b) Landsat image in 2001

 (c) PCA (d) FCM

 (a) EM-MRF (b) Proposed method

Plate 2. The multi-temporal Landsat TM images [(a) and (b)] and the change detection results from the different unsupervised change-

illustrated in Figure 4. 
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mixed pattern (Ghosh et al., 2011). It tries to find the 
best label for every pixel based on a fuzzy measure to 
represent a degree of a pixel belonging to one class. 
The final classification result can be estimated when an 
objective error function is minimized. 

3. Expectation Maximum-Markov Random Field (EM-MRF)
Following Bruzzone and Prieto’s framework (2000), an 
EM-MRF framework is constructed. This method first 
characterizes the density function of changed and un-
changed classes after EM clustering. The final change 
mask can be obtained when the general energy reaches 
the minimum based on MRFs modal. To minimize the 
energy term, we use the same ICM algorithm in our 
proposed procedure.   

Plate 2 shows the change-detection maps from three previous 
methods and our proposed method over the whole interested 
area for qualitative comparison. It is clear that PCA and FCM, 
as context-insensitive methods, both caused a certain amount 
of salt-and-pepper noise; among the three methods, FCM 
performed the worst as it labeled an almost unchanged region 
of water as the change. EM-MRF and our method, as context-
sensitive methods, could obtain similar results with a low 
noise level.

Figure 4 shows the examples of five subsets with different 
change types and the detection results from three unsuper-
vised method and our proposed method. We crop five sub-
images with representative area of 50*50 pixels for each from 
original images and different detection maps in Plate 2. From 
the result, our proposed method can generally outperform the 
other three methods over the different change types. Espe-
cially for the noisy type of local reflectance change and water 

quality change, PCA, FCM, EM-MRF all easily over-detect falsely, 
while our proposed method can keep them out for the final 
results (Figure 4b and Figure 4c). The only exception among 
all the examples is the case of barren land<->built-up area 
(Figure 4e). This is because we think the transition of built-up 
area to barren land with extremely smooth surface usually 
fails to hold distinguishing change on our saturation level, as 
their materials are similar, which affects the performance.

Table 2 is the result of the quantitative evaluation for the 
detection results from four methods using Im and Jensen’s 
(2005) evaluating framework. A total of 800 sample points 
were randomly created within the study area. The reference 
data are acquired from Google Earth™ with the help of expert 
interpretation and field survey. Each subset (or pixel) is first 
spatially matched with the corresponding high spatial resolu-
tion image. The change type included in each pixel is then 
checked by manual interpretation. Based on the reference 
data, 141 sample pixels are categorized into “changed” and 
659 are labeled as “unchanged.” To compare the change de-
tection accuracy of four techniques, the error matrix and the 
corresponding overall accuracy and Kappa statistic as well 
as user’s and producer’s accuracy are calculated (Story and 
Congalton, 1986; Congalton, 1991). Table 2 lists the error ma-
trix derived for each method. The overall accuracy and Kappa 
statistic for our proposed method are 95.1 percent and 83.3 
percent, both are the highest among four methods. EM-MRF is 
ranked the second and FCM and PCA perform the poorest based 
on the overall accuracy. When we look at the accuracy for 
individual classes, the performance of our proposed method 
is also the best among four methods for both “change” and 
“no-change” classes. However, compared with the individual 
user’s and producer’s accuracy of “no-change” class, the ac-
curacy of “change” class from our proposed method are much 

Figure 4. The subsets and change-detection results of four unsupervised for different subset scenes (The detected changes from differ-
ent methods are shown in pure white): (a) vegetation<->built-up area; (b) ; (c) 
unchanged water body with different quality; and (d) water<->barren land; (e) barren land<->built-up area
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higher than the corresponding individual accuracy of PCA, 
FCM, and EM-MRF. The better performance of our proposed 
method clearly indicates the benefit of the complementary 
feature selection in our proposed method for urban change 
detection. 

Discussion and Conclusions
This paper addresses the detection of land-cover change from 
the bi-temporal remote-sensing images. The proposed proce-
dure mainly uses information from a very novel group of ob-
servations: luminance and saturation. Their nature for identi-
fying different types of change occurred in urban area has been 
exploited; a procedure based on combining the two features is 
created by integrating automatic radiometric normalization, T-
point thresholding, Bayes Fusion and Markov Random Field. 
For overall accuracy assessment, the proposed procedure is 
superior over three earlier referenced unsupervised methods.

The key component for our proposed model is feature 
design. We think the best feature number should be two since 
more features would greatly increase computation for MRFs 
modeling (e.g., three features will produce 27 initial classes 
for implementing MRFs). An efficient procedure for designing 
features should include the consideration of both (a) feature 
independence, and (b) separability of our change of interest 
from multiple changes. Since our features are derived from 
HSL color modal, their independence can be guaranteed for 
the subsequent Bayes classifier fusion; both visual and quan-
titative tests in our paper have indicated their perfect comple-
mentary nature for identifying only change of interest while 
keeping noisy types excluded.

Luminance feature is mainly contaminated by low reflec-
tance to high reflectance (LR->HR), which mostly occurs for 
the built-up area, such as the example of ‘A’ region in Plate 
1a and Figure 4b. This can be explained by the fact that hu-
man activities often modify the surface of the built-up area 
(such as roof or road renovation), which results in reflectance 
change. Saturation feature easily results in false inclusion of 
inter-class changes of vegetation (IC) and water quality change 
(QC) as these two noisy changes mainly modify the color 
information of the land surface and slightly affect the reflec-
tance level. Generally, saturation is less affected by local-re-
flectance changes since such changes are considered to exert 
roughly equivalent influences on three bands.  

The results from the experiments indicate that the pro-
posed procedure offers measureable advantages over the 
earlier unsupervised change detection (Plate 2 and Figure 4). 
The traditional techniques, such as FCM and EM-MRF, select 
changed pixels based only on the “measureable distances” 
to the center of changed and unchanged class, without any 
step for feature selection. This would lead to some errors. For 
example, if change is determined based on spectral bands 
(such as Red, Green, and Blue band), the noisy change of 
varied local illumination would exert changed magnitude for 
all the feature bands. As a result, some unchanged land-cover 
has a high variance of pixel values with large distances to the 
center of general unchanged class in the feature space, and 
thus is easy to be falsely classified as change class. Although 
PCA transform can be thought of as a method based on feature 
selection (the second component is chosen), it is not efficient 
since there is only one feature used for change detection.

It is noteworthy that the task of feature selection is prob-
lem-dependent, and heavily relies on the knowledge of the 
application domain. The proposed method is only tested for 
urban change-detection; for other applications such as forest 
damage or wetland monitoring, the complementary nature 
of lightness and saturation cannot be guaranteed since “real 
change” and “noisy change” need to be redefined. For future 
research, the exploitation of more change features and intro-
duction of supervised frameworks remains to meet a variety 
of application scenes.
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