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Introduction

In the last three decades, the technologies and methods of remote sensing have

evolved dramatically to include a suite of sensors operating at a wide range of

imaging scales with potential interest and importance to planners and land managers.

Coupled with the ready availability of historical remote sensing data, the reduction in

data cost and increased resolution from satellite platforms, remote sensing technology

appears poised to make an even greater impact on planning agencies and land

management initiatives involved in monitoring land-cover and land-use change at a

variety of spatial scales. Current remote sensing technology offers collection and

analysis of data from ground-based, atmospheric, and Earth-orbiting platforms, with

linkages to GPS data, GIS data layers and functions, and emerging

modeling capabilities (Franklin, 2001). This has made remote sensing a valuable

source of land-cover and land-use information. As the demand for increased amounts

and quality of information rises, and technology continues to improve, remote sensing

will become increasingly critical in the future. Therefore, the focus of this chapter is

on the issues and challenges associated with monitoring land-cover and land-use

change.

Planning and land management agencies have numerous and varied responsi-

bilities and tasks (Jensen and Cowen, 1999). Further, their ability to complete these

tasks is hampered by the paucity of comprehensive information on the types and

rates of land-cover and land-use change, and even less systematic evidence on the

causes, distributions, rates, and consequences of those changes (Loveland et al.,

2002). For example, at the rural–urban fringe, large tracts of undeveloped rural land

are rapidly converted to urban land use. This land-use dynamic makes it difficult for

planners to obtain or maintain up-to-date land-cover and land-use information,

where typical updating processes are on an interval scale of 5 years (Chen et al.,

2001). Although the full potential of remote sensing technology for change detection

applications has yet to be completely realized, planning agencies at local, regional

and international levels now recognize the need for remote sensing information to

help formulate policy and provide insight into future change patterns and trends

(Jensen and Cowen, 1999).

Remote sensing information, in concert with available enabling technologies such as

GPS and GIS, can form the information base upon which sound planning decisions can

be made, while remaining cost-effective (Franklin et al., 2000). Clearly, however, the

fast-paced developmental nature of remote sensing technology often overlooks the needs

of end-users as it ‘…continues to outpace the accumulation of experience and

understanding’ (Franklin, 2001: 137). As a result, effective real-world operational

examples of land-cover and land-use change remain relatively rare (Loveland et al.,

2002; Rogan et al., 2003).

In the near future, the field of remote sensing will change dramatically with the

projected increase in number of satellites of all types (Glackin, 1998). This will further

compound the problems described above. In order to help create a better understanding of

the rapid advancements in remote sensing technology that have occurred over the last
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three decades, we review the current state of remote sensing technology (i.e. sensors, data,

analysis methods and applications) for monitoring land cover and land use. Specifically,

we provide a brief history of the advances in remote sensing technology, and a review of

the major technical considerations of land-cover and land-use monitoring using remote

sensing data.

J. Rogan, D.M. Chen / Progress in Planning 61 (2004) 301–325 303



Evolution of remote sensing technology

Although coarse-spatial resolution meteorological satellite data have been available

since the 1960s, civilian remote sensing of the Earth’s surface from space at medium

spatial resolutions (i.e. ,250 m) only began in 1972 with the launch of the first of a series

of Earth Resource Satellites (i.e. Landsat). This was the initiation of significant research

activity in remote sensing technology, data analysis and applications, which continue

today. The last 5 years have seen a proliferation of satellite platforms with a large number

of sensors (e.g. Terra and ENVISAT) and increasing spatial resolutions (e.g. IKONOS and

Quickbird). Indeed, the ever-expanding constellation of satellite platforms has acquired

thousands of trillions of bytes of data invaluable for planning and land management

applications (Jensen, 2000). It has been estimated that approximately 100 new satellites

will be launched during the 10-year period between 1996 and 2006 (Fritz, 1996).

Furthermore, high-resolution airborne data acquisition technology has developed rapidly

in recent years. As a result, there is a large selection of remote sensing data of the Earth’s

surface with respect to spatial, spectral and temporal sampling. A summary of the key

characteristics of selected satellite sensors is presented in Table 1. For comparison, the key

attributes of urban/suburban and natural landscapes and their minimum spatial and

spectral resolution requirements are presented in Table 2.

Remote sensing technology has been driven by three interrelated factors: (1)

advancements in sensor technology and data quality, (2) improved and standardized

remote sensing methods, and (3) research applications (the least developed of the three,

Franklin, 2001). The following sections focus on the evolution of sensors and data, with a

brief discussion of methods and applications (for more detail on these issues the reader is

referred to Jensen, 2000; Franklin, 2001).

Coarse-spatial resolution sensors

While coarse-resolution image data (i.e. spatial resolution .250 m) fall outside of the

minimum spatial resolution requirements outlined in Table 2, a brief evaluation of the

contribution of coarse scale, large-area sensors to monitoring land-cover and land-use

change is warranted. Coarse-resolution data have been used for many years to acquire

basic land-cover and land-use information over large areas. Spatial resolution is the

obvious limiting factor in these studies, especially when urban and suburban land-cover

and land-use change is considered. For example, Stow and Chen (2002) examined the

sensitivity of anniversary-date multitemporal AVHRR1 data to map land-cover and land-

use change and found significant confusion between changed and unchanged areas, even

with the application of a geometric mis-registration model. Recently, Zhan et al. (2002)

described the monthly 250 m resolution Vegetative Cover Conversion (VCC) product

generated from Moderate Resolution Imaging Spectroradiometer (MODIS) data. This

product is designed to serve as a global alarm for land-cover change caused by

1 The Advanced Very High Resolution Radiometer (AVHRR) sensor is a critical component of the National

Atmospheric and Oceanic Administration (NOAA) series of polar orbiting satellite systems (Table 1). Although

designed for meteorological purposes, they are providing critical image data for global climate change research.
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Table 1

Characteristics of selected satellite sensors

Sensor mission Organization Operation

period

Spatial resolution

(m)

Swath (km) Spectral coverage

(mm)

Number of channels

MSS (Landsat 1-5) NASA, USA 1972–1983 79 (MS) 240 (TIR) 185 0.50–12.6 4

AVHRR (NOAA 6-15) NOAA, USA 1978– 1100 2700 0.58–11.50 5

TM (Landsat 4, 5) NASA, USA 1982– 30 (MS) 120 (TIR) 185 0.45–2.35 7

HRV (SPOT 1, 2, 3) SPOT Image,

France

1986– 10 (PAN) 20 (MS) 60 0.50–0.89 3

LISS-I (IRS-1A) ISRO, India 1988– 72.5 148 0.45–0.86 4

AVIRIS JPL, USA 20 20 0.4–2.5 224

LISS-II (IRS-1B) ISRO, India 1991– 36.25 146 0.45–0.86 4

SAR, AMI (ERS-1) ESA 1991–2000 26 102 NA NA

SAR, OPS (JERS-1) NASDA, Japan 1992 18 75 0.43–1.7 7

LISS-III (IRS-1C, 1D) ISRO, India 1995– 23, 70 188 (WiFS) 142 0.52–1.70 4

SAR (RADARSAT-1) Canada 1995– 8–100 45–500 NA NA

Panchromatic (IRS-1D) ISRO, India 1997– 5.8 70 0.50–0.75 1

GOES-8, 10 NESDIS, USA 1994– 1000 (VNIR) 8000

(SWIR) 4000 (TIR)

8 0.52–12.5 5

SAR, OPS (ERS-2) ESA, 1995– 26 102 NA NA

EarlyBird DigitalGlobe, USA 1997– 3 (PAN) 15 (MS) 6, 30 0.45–0.89 3

HRVIR (SPOT 4) SPOT Image, France 1998– 10 (PAN) 20 (MS) 60 0.50–1.75 3

Vegetation (SPOT 4, 5) SPOT Image, France 1998– 1150 2250 0.43–1.75 5

SeaWiFS (OrbView-2) OrbImage, USA 1997– 1130 2800 0.40–0.88 8

MODIS (EOS) NASA, USA 1999– 250 (PAN) 500

(VNIR) 1000 (SWIR)

2300 0.620–2.155,

3.66–14.385

36

ASTER (EOS Terra) NASA and MITI USA 1999– 15 (VNIR) 30 (SWIR)

90 (TIR)

60 0.52–0.86, 1.60–2.43,

8.125–11.65

14

MISR (EOS Terra) JPL and NASA USA 1999– 275 360 0.425–0.886 4

ETMþ (Landsat 7) NASA, USA 1999– 15(PAN) 30(MS) 60(TIR) 185 0.450–2.35, 10.4–12.5 7

IKONOS Space Imaging, USA 1999– 1(PAN) 4(NIR) 11 0.45–0.90 4

QuickBird DigitalGlobe, USA 1999– 0.82 (PAN) 3.2 (MS) 6, 30 0.45–0.90 4

Hyperion and ALI (EO-1) NASA, USA 2000– 10(PAN) 30(MS) 185 0.433–2.35 9

(continued on next page)

J.
R

o
g

a
n

,
D

.M
.

C
h

en
/

P
ro

g
ress

in
P

la
n

n
in

g
6

1
(2

0
0

4
)

3
0

1
–

3
2

5
3

0
5



Table 1 (continued)

Sensor mission Organization Operation

period

Spatial resolution

(m)

Swath (km) Spectral coverage

(mm)

Number of channels

MERIS (EnviSat-1) NASA, USA 2001– 300, 1200 1150 0.39–1.04 Up to 15

ASAR (EnviSat-1) NASA, USA 2001– 30 400 Radar 1

HRG (SPOT 5) SPOT Image, France 2002– 5 (PAN), 10 (VNIR),

20 (SWIR)

60 0.48–1.75 VNIR, SWIR 3

OrbView-3 OrbImage, USA Planned 1 (PAN), 4 (MS) 8 0.45–0.90 4

Detailed information on most sensors can be found in Jensen (2000) and the following WebPages: www.nasa.gov, www.digitalglobe.com, www.orbimage.com,

www.spot.com; ALI, advanced land imager; ASTER, advanced spaceborne thermal emission and reflection radiometer; AMI, active microwave instrument; ASAR,

advanced synthetic aperture radar; AVHRR, advanced very high resolution radiometer; AVIRIS, airborne visible infrared imaging spectrometer; ETMþ, enhanced

thematic mapper plus; EOS, earth observing system; ERS, European remote sensing; GOES, geostationary operational environmental satellite; HRV, high resolution

visible; HRG, high resolution geometric; HRVIR, high-resolution visible infrared; IRS, Indian remote sensing; ISRO, Indian Space Research Organization; JPL, jet

propulsion laboratory; LISS, linear imaging self-scanning sensors; MERIS, medium resolution imaging spectrometer; MISR, multi-angle imaging spectroradiometer;

MODIS, moderate resolution imaging spectrometer; MS, multi-spectral; MSS, multispectral scanner; NOAA, National Oceanic and Atmospheric Administration; NIR,

near infrared; OPS, optical sensor; PAN, panchromatic; SAR, synthetic aperture radar, SeaWiFS, sea-viewing wide field of view sensor; SPOT, Le Systeme Pour

l’Observation de la Terre; SWIR, short wave infrared; TIR, thermal infrared; VIR, visible infrared; WiFS, wide field sensor.
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anthropogenic activities and extreme natural events. While these data are too coarse for the

purposes of local level planning and land management, they could serve as a general

‘change’ product for regional/national agencies.

Medium-spatial resolution sensors

Medium-resolution sensors are intended to provide appropriate scales of information

for a wide-variety of Earth-resource applications. The continuity of the Landsat program

since 1972 is recognized as a key milestone in the evolution of remote sensing technology

(Franklin, 2001). For 12 years, the Landsat Multispectral Scanner (MSS) sensor provided

image data with a spatial resolution of approximately 80 m, acquired across four spectral

bands (i.e. visible and near-infrared). Although these data exhibited significant noise

(Schowengerdt, 1997), they provided a unique opportunity for researchers to investigate

and apply remote sensing data at regional scales. The MSS spatial resolution was also

sufficient for general mapping efforts in urban/suburban and natural environments

(Table 2). These data are invaluable today for historical change detection studies and form

an important component of the North American Land Characterization (NALC) data set

(Yuan and Elvidge, 1998).

The launch of the Landsat Thematic Mapper (TM) in 1984 produced a new remote

sensing data source that provided higher spectral, spatial, and radiometric resolution data

(Table 2). While the Landsat MSS spectral bands and bandwidths were selected by sensor

designers for their general utility to map vegetation and geologic features, Landsat TM

spectral channels were chosen specifically to map vegetation type, soil moisture, and other

key landscape features (Jensen, 2000). Thus, the TM-era has permitted research to be

conducted with greater precision, over large areas (i.e. the swath-width of a TM scene is

Table 2

Attributes of urban/suburban and natural landscapes with their corresponding minimum spatial and spectral

resolution requirements

Minimum spatial

resolution requirements

Minimum spectral

resolution requirements

Urban/suburban attributea

Land cover/use

Level I: USGS 20–100 m V-NIR-MIR-Radar

Level II: USGS 5–20 m V-NIR-MIR-Radar

Level III: USGS 1–5 m Panchromatic-V-NIR-MIR

Level IV: USGS 0.25–1 m Panchromatic

Natural attribute

Forest class

Level I: land cover 20–1 km V-NIR-MIR-Radar

Level II: cover types 10–100 m V-NIR-MIR-Radar

Level III: species dominance 1.0–30 m Panchromatic-V-NIR-MIR-Radar

Level IV: species identification 0.1–2.0 m Panchromatic

a Based on the hierarchical land-cover classification scheme of Anderson et al. (1976); adapted from Jensen and

Cowen (1999) and Franklin et al. (2003).
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185 £ 185 km2). Landsat TM data have facilitated investigations with thematic demands

on an order of magnitude greater than could be achieved with MSS (Table 2). However,

despite these advancements, the planning and land management community still lacked

large-area, high-spatial resolution remote sensing data from space. This situation

improved somewhat with the launch of the Système Pour l’Observation de la Terre-1

(SPOT-1) satellite in 1986. This sensor provided multispectral data with a slightly higher

spatial resolution (20 m) and a panchromatic channel (10 m). The panchromatic data are

of such geometric fidelity that they can be photo-interpreted like a typical aerial

photograph for planning needs (Jensen, 2000). Further, following the availability of these

data, many projects began to employ image fusion techniques, using panchromatic and

multispectral information for improved land-cover and land-use monitoring (e.g. Treitz

et al., 1992; Muchoney and Haack, 1994; Pellemans et al., 1993). High-spatial resolution

panchromatic information has also been used effectively as textural information for land-

cover and land-use monitoring (Chen et al., 2001). A 15 m spatial resolution panchromatic

band was added to the Landsat Enhanced Thematic Mapper (ETMþ). Overall, the

widespread availability of high-spatial resolution panchromatic data allows for high-order

investigation into urban/suburban and natural landscapes (Jensen and Cowen, 1999).

In addition to the panchromatic channel, the SPOT sensor presented a major

breakthrough in sensor design. The SPOT sensor acquires information using a linear array

of detectors. This approach is superior since there are no moving parts (i.e. a rotating

mirror that scans back and forth across the orbit path). This design provides for a longer

‘dwell-time’ or radiance integration period over a target (Schowengerdt, 1997) and

thereby provides increased sensitivity to radiometric contrasts between surfaces. The

SPOT system’s overall capability was enhanced significantly in 1998 with the addition of

a mid-infrared channel on the SPOT-4 sensor, providing greater utility for land-cover and

land-use monitoring (Stroppiana et al., 2002). The SPOT-5 sensor (launched in 2002)

collects panchromatic, visible and near-infrared, and mid-infrared data at 5, 10 and 20 m

spatial resolution, respectively (SPOT Image, 2002).

The Indian Space Research Organization (ISRO) has also added to the suite of medium-

resolution sensors. ISRO has launched four linear array sensors to date (IRS-1A, 1B, 1C

and 1D). In general, the IRS sensors offer a combination of TM/ETMþ spectral resolution,

with SPOT sensor spatial resolution. The IRS-1C and 1D (launched in 1995 and 1997,

respectively) offer visible and near-infrared bands at 23 m spatial resolution and a mid-

infrared band at 70 m spatial resolution. Most significantly, these IRS sensors acquire

panchromatic information at 5.8 m spatial resolution, which has significant implications

for higher-order mapping capabilities (Table 2).

The contribution of medium-resolution sensors is expected to continue long into the

future (Franklin, 2001). Indeed, follow-on sensors have already been launched. The

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), an

instrument on the Terra platform, acquires visible and near-infrared information at 15 m

spatial resolution and mid-infrared information at 30 m spatial resolution. Further, the

Earth Observer (EO-1) platform includes the linear array Advanced Land Imager (ALI)

with 10 bands, ranging from the visible to mid-infrared regions of the electromagnetic

spectrum at 30 m spatial resolution and a panchromatic band acquired at 10 m spatial

resolution (Jensen, 2000).
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High-spatial resolution sensors

The discussion of medium-resolution sensors highlights a tendency among

instrument designers to prolong the longevity of medium-spatial resolution image

acquisition, yet planners and land managers require high-spatial resolution data to

address land-cover and land-use problems at higher-order thematic levels where

spatial resolutions of 5 m or higher are required (Table 2). From a spaceborne

perspective, this became possible in 1994, when the United States government made a

decision to allow civil commercial companies to market high-spatial resolution

satellite remote sensing data (i.e. between 1 and 4 m spatial resolution, Glackin,

1998). This groundbreaking decision resulted in several new spaceborne high-

resolution sensors (Table 1).

Technological advances in sensor design allow aerial photographic precision and

quality in these satellite-based data, and permit the investigation of thematic information

at the highest-order in both urban/suburban and natural landscapes (Table 2). The three

most notable high-resolution spaceborne sensors are IKONOS-2 (Space Imaging Inc.,

launched in 1999), Quickbird-2 (DigitalGlobe Inc., launched in 2001), and Orbview-3

(ORBIMAGE Inc., planned). These sensors offer 11-bit visible and near-infrared

information at 4 m spatial resolution, and panchromatic information at 1 m or higher

(Jensen, 2000, Table 1).

Airborne systems have been in operation for many years and are increasingly reliable,

cost-effective and available worldwide (Franklin, 2001). The flexibility of airborne

platforms means that onboard sensors can acquire data at user-specified times, rather than

those of scheduled satellite overpasses, and platform altitude can be reduced to provide

high-resolution data (as good as, or better than that stated above). Multispectral sensors

that record data spanning the ultraviolet through the mid-infrared parts of the spectrum

have been in use for more than 20 years (Jensen, 2000). In addition, airborne high-fidelity

digital frame cameras have seen wide use in land-cover and land-use applications (Coulter

et al., 2000; Chen et al., 2002). For example, digital frame cameras are now capable of

acquiring high-spatial resolution data at 0.2 m across visible and near-infrared

wavelengths.

Hyperspectral sensors

Chapter 2.3 indicates that the majority of sensor research and development has been

devoted to: (a) medium-resolution (i.e. spatial and spectral) large-area image acquisition,

and (b) high-resolution small-area image acquisition. However, recent work has revealed a

burgeoning interest in the field of imaging spectrometry for land-cover and land-use

monitoring (Treitz and Howarth, 1999). Imaging spectrometry is defined as ‘the

simultaneous acquisition of images in many relatively narrow, contiguous…spectral

bands…" (Jensen, 2000: 227). These data show promise for identifying a range of surface

materials or phenomena that cannot be identified with broadband imaging systems (Herold

et al., 2002).

To date, government agencies and commercial firms have designed numerous linear

and area array imaging spectrometers capable of hyperspectral imaging (Jensen, 2000,
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Fig. 1). Indeed, Franklin (2001) noted a significant increase in the number of airborne

multispectral and hyperspectral data providers over the previous 10-year period. The

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) has been operating for 10 years

and provides 12-bit data at ,20 m spatial resolution across 224 spectral bands. Another

notable airborne hyperspectral sensor is the Compact Airborne Spectrographic Imager-2

(CASI-2), a programmable system (i.e. the user can program the sensor to collect a

combination of high-spatial and spectral resolution data) that is capable of collecting up to

228 spectral channels. Current hyperspectral satellite sensors include the Moderate

Resolution Imaging Spectrometer (MODIS) and the Earth Observer-1 Hyperion

instrument (Table 1).

It is important to note that a large amount of research has examined and, as a result,

developed an understanding of hyperspectral data in natural environments (Treitz and

Howarth, 1999; Ustin et al., 1999). There remains a significant need for research within the

context of assessing change in urban/suburban environments using hyperspectral remote

sensing (Rashed et al., 2001; Herold et al., 2002). Recent studies that have applied

hyperspectral data in urban/suburban areas have found this complex environment

problematic due to the myriad of surface covers present, and highlight the need for more

investigation. Hyperspectral data for various surfaces in an urban environment are

illustrated in Fig. 1.

Fig. 1. AVIRIS (normal spatial resolution of 4 m) image of urban area with reflectance spectra for asphalt parking

lot, roofs and roads in Santa Barbara, CA (Data provided by Dar Roberts, UCSB).
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Microwave sensors

Active microwave remote sensing (i.e. radar) technology has been available for more

than 50 years, but has not seen widespread use on the scale of optical remote sensing.

Despite the theoretical precepts to its utility in urban/suburban and natural environments,

there has been a paucity of applications of active radar to land-cover and land-use

monitoring (Kasischke et al., 1997). This may be attributed to the lack of general

understanding of radar data and to insufficient methods of analyzing them. However, for

20 years a number of synthetic aperture radar (SAR) systems have been developed, and

five separate spaceborne SAR systems have been successfully deployed: SIR-C/X-SAR,

ERS-1, ERS-2, JERS-1, and RADARSAT-1 (Table 1).

Of the SAR systems listed above, only RADARSAT-1 (launched by the Canadian

government in 1995) and ERS-2 (launched by the European Space Agency in 1995) are

still in continuous operation. C-band RADARSAT-1 is unique in that it provides a range of

spatial resolutions and geographic coverages. For example, in Fine Beam mode, data are

acquired over 50 £ 50 km2 areas at 10 m spatial resolution, whereas, in ScanSAR Wide

Beam mode, data are acquired over 500 £ 500 km2 areas at 100 m spatial resolution

(Jensen, 2000). ERS-2 collects data in C-band wavelengths at 26 £ 30 m2 spatial

resolution. C-band data from these sensors have been used effectively in a number of forest

mapping and forest change detection studies (Grover et al., 1999; Quegan et al., 2000).

The remote sensing research community appears to have a better grasp of the potential of

active SAR in natural environments, but work is continuing in urban/suburban

environments, particularly around the synergistic application of SAR and optical data

(Nezry et al., 1993; Gamba and Houshmand, 2001). Several new SAR satellites are

planned for launch in the near future, adding polarization diversity and polarimetry to a

range of resolutions and swath widths (e.g. ENVISAT, ALOS, PALSAR, and

RADARSAT-2).

J. Rogan, D.M. Chen / Progress in Planning 61 (2004) 301–325 311



Evolution of methods and applications

Curran (1985) suggested that rapid technological advancements and improved sensor

systems had propelled remote sensing into a stage of exponential growth toward an era,

where reliable information can be generated and shared routinely for planning and land

management applications. This rapid advancement has been facilitated by substantial

improvements in remote sensing methods and applications (Franklin, 2001).

Image processing systems are a key component of the infrastructure required to support

remote sensing applications (Schowengerdt, 1997) and have improved in number and

capability in the last 15 years. Advancements in computer technology have obviously

facilitated the development of image processing systems. Remote sensing applications

have clearly benefited from the recent phase of development, which has focused on ease-

of-use, interoperability with GIS, and increased availability of algorithms for automated

processing of remote sensing data (Franklin, 2001). Further, increased availability and

access to remote sensing data (i.e. long term and historical), GIS and spatial data sets from

ever-multiplying digital libraries has been an invaluable aid to development in the last

decade (Jensen, 2000). Also, the decision to discontinue Selective Availability in GPS

receivers in 2000 allowed an increase in accuracy for use in remote sensing calibration and

validation applications (Gao, 2002). Significant cost-sharing initiatives by consortia of

federal agencies, such as the Multi-Resolution Land Characteristics (MRLC) have

facilitated increased data availability, and therefore, increased numbers of remote sensing

applications. These developments are leading to an emphasis on remote sensing end-user

products. Concomitant to this is a reduction in costs at all levels of the image processing

chain (e.g. cost of remote sensing data acquisition, computer support, and image

processing software).

Factors affecting remote sensing data costs include: data acquisition platform, image

spectral resolution and spatial resolution. Although the precise cost for remote sensing

data has fluctuated over the past 30 years, some relative relationships have remained

consistent (Lunetta, 1998). Coarse- (spectral and spatial) satellite data (e.g. AVHRR) are

many orders of magnitude less expensive than medium- (spectral and spatial) resolution

data (e.g. Landsat and SPOT). Further, high-resolution data (e.g. IKONOS, Quickbird) are

approximately one order of magnitude greater in cost compared to medium-resolution

data. Table 3 provides the estimated cost per unit area and preprocessing cost of remote

sensing data. From a practical standpoint, costs are often the most important factor in a

remote sensing application (Phinn, 1998).

Early applications of remote sensing technology were largely experimental, but soon

led to an expanding field of land-cover and land-use classification to establish baseline

conditions for natural and urban/suburban areas (Lunetta, 1998). These efforts were aided

by the hierarchical land-cover classification scheme developed by Anderson et al. (1976),

which established guidelines for remote sensing mapping efforts, and its influence persists

today (Franklin et al., 2003). With improved understanding of land-cover processes and

improved means to observe them, researchers began investigating both the patterns and

processes of land-cover and land-use change in a variety of environments, including;

change in vegetation canopy and/or shrub cover (Singh, 1989; Levien et al., 1999); change

in urban/suburban cover (Chan et al., 2001); wetland monitoring (Jensen et al., 1995;
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Phinn and Stanford, 2001); and crop mapping and monitoring (Fang, 1998; McNairn et al.,

2002). Recent applications have moved into the realm of land-cover and land-use

modelling for ecosystem sustainability assessments in natural and agricultural areas

(Moulin et al., 1998; Vine and Puech, 1999), and projected growth assessment of urban/

suburban areas (Clarke and Gaydos, 1998).

Table 3

Comparison of typical costs for different types of remote sensing imagery per square kilometer (after Lunetta

(1999) and Franklin (2001))

Spatial

resolution

Sensor Scene

coverage (km2)

Estimated acquisition

cost per km2

Estimated preprocessing

cost per km2

Coarse (.250 m) MODIS 5 428 900 $0.00 $0.00005

Orbview-1 3 750 000 $0.00013 $0.00006

NOAA AVHRR 5 760 000 $0.00015 $0.000078

Medium

(20–250 m)

Landsat MSS 34 000 $0.0088 $0.0044

Landsat TM 4–5 34 000 $0.0162 $0.0081

Landsat ETM 7 34 000 $0.0213 $0.01065

IRS (XS) 21 900 $0.114 $0.028

SPOT 1-3 3600 $0.416 $0.15

ASTER 3600 $0.0152 $0.0076

RADARSAT 1000 $2.5300 $1.20

High (,20 m) IKONOS 121 $29.00 $14.50

SPOT 5 3600 $0.73 $0.27

IRS (Pan.) 4900 $0.33 $0.08

Quickbird 400–1600 $39.00 $19.5

Archive Color-IR

Photography (1:40 000)

83 $0.50 $0.175

New Color-IR

Photography (1:40 000)

83 $5.50 $2.75

Aircraft digital

imagery (1 m)

Variable $50 $25

AVIRIS (20 m) 99 $5.00 $2.50

LIDAR Variable $74 $37

Cost information applies to continental United States only (US dollars) for system-corrected data, as of

February 2003.
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Methodological issues in mapping and monitoring land-cover and land-use change

Chapter 3 demonstrates that remote sensing data users are, and will continue to be,

inundated with an enormous variety of data that may, or may not be, useful for particular

planning purposes (Phinn, 1998). Trade-offs exist in the resolving power of these remote

sensing systems (i.e. spatial, spectral, radiometric and temporal), which will affect the

quality, quantity, and timeliness of acquired imagery. Therefore, successful utilization of

remotely sensed data for land-cover and land-use monitoring requires careful selection of

an appropriate data set and image processing technique(s) (Lunetta, 1998). Chapter 2

summarizes the conceptual framework that links the information and environmental

characteristics of a land-cover and land-use monitoring project to a suitable choice of

remote sensing data. The main considerations are spatial, spectral and temporal resolution

required for a specified monitoring purpose. An example of how different information can

be revealed in images of different spatial resolutions is presented in Fig. 2, where a

suburban area is depicted on a 1 m spatial resolution airborne digital image. Generally, as

the spatial resolution of the data becomes coarser, the interpretability of the data decreases,

particularly in heterogeneous urban areas.

Digital change detection is the process of determining and/or describing changes in

land-cover and land-use properties based on co-registered multitemporal remote sensing

data. The basic premise in using remote sensing data for change detection is that the

process can identify change between two (or more) dates that is uncharacteristic of normal

variation. To be effective, change detection approaches must maximize inter-date variance

in both spectral and spatial domains (i.e. using vegetation indices and texture variables).

Numerous researchers have addressed the problem of accurately monitoring land-cover

and land-use change in a wide variety of environments with a high degree of success

(Muchoney and Haack, 1994; Singh, 1989; Chan et al., 2001).

The simplest taxonomy separates land-cover and land-use changes that are categorical

versus those that are continuous (Abuelgasim et al., 1999). Categorical changes in time,

also known as post-classification comparison, occur between a suite of thematic land-

cover and land-use categories (e.g. urban, developed, grassland, forest). Post-classification

change detection techniques, however, have significant limitations because the

comparison of land-cover classifications for different dates does not allow the detection

of subtle changes within land-cover categories (Macleod and Congalton, 1998). Further,

the change-map product of two classifications often exhibits accuracies similar to the

product of multiplying the accuracies of each individual classification (Stow et al., 1980;

Mas, 1999).

The second taxon of change is continuous, known also as pre-classification

enhancement, where changes occur in the amount or concentration of some attribute of

the urban/suburban or natural landscape that can be continuously measured (Coppin and

Bauer, 1996). The goal of change detection in a continuous context, therefore, is to measure

the degree of change in an amount or concentration of a variable such as vegetative, or urban

cover, through time. The choice of change detection taxon is germane to the needs of the

user, and should be guided using the scene model approach described in Chapter 2.

Once the choice of change detection taxonomy is determined, decisions on the data

processing requirements can be made. Requirements include geometric/radiometric
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corrections, data normalization, change enhancement, image classification and accuracy

assessment (Lunetta and Elvidge, 1998). In Chapter 4.2 we discuss the major issues

involved in change detection using remote sensing data including geometric correction,

radiometric correction or normalization, change enhancement and detection, and

classification for land-cover and land-use monitoring.

Geometric correction

Accurate per-pixel registration of multi-temporal remote sensing data is essential for

change detection since the potential exists for registration errors to be interpreted as

land-cover and land-use change, leading to an overestimation of actual change (Stow,

1999). It can also ensure the user that the change that is identified is accurate and not

an artefact of an image processing procedure. Geometric registration is required to

remove or reduce the effects of non-systematic or random distortions present in remote

sensing data. These distortions include variations in sensor system attitude and altitude,

and can only be accurately corrected by developing a model to tie per-pixel image

features to specific per-pixel ground features (i.e. ground control points (GCPs)) where

geographic coordinates are known (i.e. from an accurate reference map/image or GPS

data, Kardoulas et al., 1996).

Geometric registration error between two images is expressed in terms of an acceptable

total root mean square error (RMSE), which represents a measure of deviation of corrected

GCP coordinate values from the original reference GCPs used to develop the correction

Fig. 2. Images of suburban housing in San Diego, CA. The data were acquired at a nominal spatial resolution of

1 m by an airborne ADAR system. The orginal data were resampled to coarser resolutions, shown here. Imagery

is displayed as false-colour infrared, where ADAR band 4 (near-infrared) is coloured in red, band 3 (red) is

coloured in green, and band 2 (green) is coloured in blue.
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model. Robust and unbiased estimates of RMSE should be calculated using independent

GCPs not used in model formation (Kardoulas et al., 1996). Several authors recommend a

maximum tolerable RMSE value of ,0.5 pixels (Jensen, 1996), but others have identified

acceptable RMSE values ranging from .0.2 pixels to ,0.1 pixels, depending on the type

of change being investigated (Townshend et al., 1992).

Several methods have been developed to compensate for the effects of mis-registration

on image change detection. Justice et al. (1989) suggested pixel aggregation to a larger

spatial resolution to assess change, thus changing the analysis to a larger minimum

mapping unit (MMU), and reducing mis-registration effects. Gong et al. (1992) used two

image-filtering algorithms with some success in reducing mis-registration effects. Finally,

Stow (1999) and Stow and Chen (2002) presented and tested a new model on TM and

AVHRR data that used estimates of mis-registration across a scene (known as mis-

registration fields) combined with calculation of spatial brightness gradients to adjust the

magnitude of multitemporal image differences. Their study demonstrated the effects of

image resolution on the potential to compensate for mis-registration error, as this error

may be more significant in coarse resolution data. Improvements are needed in reporting

the characteristics of geometric registration, including improved error analysis in both

geometric accuracy and geometric uncertainty (Franklin, 2001).

Radiometric correction and normalization

Variations in solar illumination conditions, atmospheric scattering, atmospheric

absorption and detector performance result in differences in radiance values unrelated

to the reflectance of land cover. Absolute radiometric quantification is an expensive, time-

consuming and likely untenable goal for land-cover and land-use monitoring (Song et al.,

2001). Therefore, the primary goal of most change detection studies is to achieve image-

to-image normalization, so that spatial–temporal differences in image brightness or

derivative values primarily convey information about changes in land cover and land use

(Roberts et al., 1998).

The two most commonly used radiometric normalization techniques are: (1) dark

object subtraction (DOS, Chavez, 1996); and (2) relative radiometric normalization using

pseudo-invariant features (PIFs) (Schott et al., 1988). Both approaches are based on the

assumption that the atmospheric scattering component is consistent (i.e. non-spatially

varying) throughout the imagery (Carlotto, 1999). Song et al. (2001) compared seven DOS

algorithms and one PIF method with uncorrected ‘raw’ multitemporal Landsat TM data

and found that all corrections provided an improvement over the raw data. However, these

atmospheric normalization algorithms are often unsuitable for removing spatially varying

haze resulting from smoke plumes or smog in remote sensing data acquired over both

natural and urban areas (Rogan et al., 2001). Carlotto (1999) presented a new method for

reducing the effects of wavelength-dependent scattering in multispectral imagery, which is

intended for use in situations, where atmospheric scattering affects visible wavelengths

and varies across space. This method results in an image in which space-varying scattering

has been equalized over the entire image so that previously developed techniques (i.e.

DOS) for removing constant scattering effects can be used.
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Even when great care is taken to normalize satellite data for exogenous effects to allow

image analysts to focus on change-related events revealed in the remote sensing data,

intra-annual differences in climate, particularly precipitation, can cause significant

differences in pixel brightness (Rogan et al., 2002). These seasonal effects often lead to

errors in change detection products where estimates of land-cover abundance, composition

and condition are required (Cihlar, 2000). Recently, Jakubauskas et al. (2002) found

Fourier harmonic analysis of a NOAA AVHRR NDVI biweekly composite time series

data, useful for examining the interactions between landscape environmental factors and

inter-annual variability of land-cover types in the southern Great Plains region of the

United States.

Change enhancement

Change enhancement applies to pre-classification enhancement only, as it is not required

in post-classification approaches. One of the most commonly applied change enhancements

is ‘image subtraction’. This involves calculating a change image based on the difference

between corresponding image-channels from two dates. Change images are easily

interpreted because their histograms are normally distributed (i.e. unchanged pixels fall

along the center of the histogram, with change pixels falling to the left and right of the

histogram, depending on the darkness and brightness of these areas, Jensen, 2000). The

same procedure is often performed on enhanced imagery, such as vegetation indices (Singh,

1989). This approach can also be performed on a ratio-based or perpendicular index.

Principal components analysis (PCA) involves the orthogonalization of a multispectral

and multi-date dataset based on components generated from an eigenvector-derived

factor-loading matrix (Schowengerdt, 1997). The factor-loading matrix is based on a

correlation matrix approach (standardized), or based on the variance-covariance matrix

(non-standardized). Studies have shown that the choice of matrix can affect the statistical

nature of the final components (Patterson and Yool, 1998). In general, when PCA is

performed on a multi-date layer stack, the first component will be representative of the

overall multi-date image variance (similar to an albedo image, Rogan and Yool, 2001).

Higher components (i.e. PC2, PC3, etc.) will be representative of changes in image

variance between the dates. These high-order components, therefore, are responsive to

inter-date change and can be used to classify changes in a study area. PCA works well, and

is widely used for this purpose (Lunetta and Elvidge, 1998). In addition, the process results

in data reduction (i.e. a large data set is compressed into a limited number of components).

A drawback of PCA, however, is that the technique is based only on the statistical

properties of the data, and is therefore limited in its application to different times and

different areas. In addition, the statistical nature of PCA determines that areas of high

inter-date variance in the imagery tend to ‘drive’ the eigenvector process, which can prove

frustrating if those areas are not the change features of interest to the interpreter.

Some of the drawbacks associated with PCA are easily overcome using the

Multitemporal Kauth Thomas transformation (MKT). This index is based on the

orthogonalization of a multiband, and multi-date dataset (Collins and Woodcock, 1996).

For example, the MKT can produce six output features based on the transformation of a

12-band multi-temporal Landsat TM dataset. These output features represent: (1) stable
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brightness; (2) stable greenness; (3) stable wetness; (4) change in brightness; (5) change

in greenness; and (6) change in wetness. The MKT has been used in several studies to

date (Levien et al., 1999; Rogan et al., 2002), and appears to be a robust indicator of

land-cover change. Unlike the PCA, MKT is not scene-dependent, and its use of stable

and calibrated transformation coefficients ensures that its application is suitable between

regions and across time. The fact that the MKT produces several sets of change features,

rather than a single feature (e.g. Normalized Difference Vegetation Index (NDVI)) is

another attractive quality. Further, the MKT produces stable spectral components, which

could be used in developing baseline spectral information for long-term studies (Rogan

et al., 2003).

Change vector analysis (CVA, Malila, 1980) involves the calculation of two

change features (magnitude of change, and direction of change) based on a

multitemporal dataset. Magnitude (i.e. quantity of inter-date change) is calculated

based on the Euclidean distance of a bi-temporal (or multi-temporal) spectral vector.

The direction image is calculated based on the angularity of the vector (Cohen and

Fiorella, 1998). Several methods exist for calculating the vector angle. Lambin and

Strahler (1994) used PCA of a 12-date AVHRR dataset to calculate the angular

distance of the multispectral vectors. Further, Cohen and Fiorella (1998) based their

calculation on the Gramm-Schmidt orthogonal distance from a baseline (i.e. a stable

image date). Both approaches produced physically meaningful magnitude and

direction images and their subsequent analyses were also successful. In light of

these facts, it is odd that explicit application of CVA is not seen more often in the

remote sensing literature. Strahler et al. (1996) stated that this was to be the

‘algorithm of choice’ for the MODIS quarter-annual land-cover change product (at

1 km spatial resolution). Better use will be made of CVA when algorithms become

automated, and a steadfast and reliable method is developed for measuring the change

direction angle.

Composite analysis (CA) has been used often in change detection applications

(Yuan and Elvidge, 1998). This approach involves compositing all desired bands into

a multi-date layer stack (the layer stack may contain raw or enhanced image data).

Following this, supervised classification (using calibration data), or unsupervised

classification is then performed on the data set to obtain the desired number of output

classes. This approach is straightforward and intuitive. The premise of CA is that

‘change’ classes will be located in the entire set of available classes (Cohen and

Fiorella, 1998). A drawback of this approach, however, is that non-change classes

may mask the statistical variance of the change classes.

It is generally recommended that a thresholding procedure be performed on the data, so

that change and no-change pixels can be readily located in the change imagery. Thresholds

are usually based on the number of standard deviations from the mean of the change

image, typically an iterative and subjective procedure (Lunetta et al., 2002). Therefore,

recent research has examined the selection of thresholds based on a sound statistical basis

(Rogerson, 2002).
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Image classification

Image classification applies to both post-classification and pre-classification change

detection approaches and can be performed using either supervised or unsupervised

approaches. Prior to supervised classification, calibration data must be sufficiently

sampled from appropriate areas to account for the spectral variability of each class in

question. In unsupervised classification, an algorithm is chosen that will take a remotely

sensed image data set and find a pre-specified number of statistical clusters in

measurement space (Schowengerdt, 1997). Although these clusters must then be assigned

to classes of land cover and land use, this method can be used without having prior

knowledge of the ground cover in the study site.

Supervised classification, however, does require prior knowledge of the ground cover

in the study area and is, therefore, a more intuitive method for land-cover change

mapping. With the supervised approach, calibration pixels are selected and associated

statistics are generated for the classes of interest. Recent work by Chen and Stow (2002)

compared the performance of three different calibration strategies for supervised

classification (single pixel, seed, and polygon). The calibration set size, the image

resolution, and the degree of autocorrelation inherent within each class influenced the

performance of these strategies, and polygon-based calibration performed best in areas of

heterogeneous land-cover type.

The vast majority of land-cover and land-use monitoring approaches have used

traditional image classification algorithms (e.g. maximum likelihood), which assume: (i)

image data are normally distributed, (ii) the images are H-resolution2; and (iii) pixels are

composed entirely of a single land-cover or land-use type (Franklin et al., 2003).

Conversely, L-resolution3 approaches have employed empirical models to estimate

biophysical, demographic and socio-economic information (Rashed et al., 2001).

Recently, researchers have investigated scenes using a combination of L- and H-

resolution approaches (Roberts et al., 1998; Rogan et al., 2002). For example, spectral

mixture analysis (SMA) can be used to estimate sub-pixel information about both natural

and urban/suburban scenes (Phinn et al., 2002). Fuzzy sets approaches, where an

observation can have degrees of membership in more than one class, have also shown

promise (Foody, 1999).

Machine learning classifiers (e.g., decision trees and artificial neural networks) have

been used effectively in a variety of single-date land-cover mapping studies (Huang

and Jensen, 1997; DeFries and Chan, 2000). In almost all cases, these classifiers have

proven superior to conventional classifiers (e.g. maximum likelihood), often recording

overall accuracy improvements of 10–20%. The success of machine learning

classifiers in resolving land cover and changes in land cover and land use for

complex measurement spaces can be attributed to several factors. Machine learning

2 H-resolution indicates that the objects of interest on the surface are larger than the pixel size (Strahler et al.,

1986). Hence, the reflectance measured for a given location is likely to be closely related to the object itself.
3 L-resolution indicates that the objects of interest on the surface are smaller than the pixel size (Strahler et al.,

1986). Hence the reflectance measured for a given location is a combination of the objects within the

instantaneous field of view.
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classifiers are not constrained by parametric statistical assumptions. Hence, they are

better suited for analyzing: (i) multi-modal, noisy, and/or missing data; and (ii) a

combination of categorical and continuous ancillary data. However, few studies, to

date, have examined the potential of this approach in a change detection context

(Gopal and Woodcock, 1996; Abuelgasim et al., 1999; Rogan et al., 2002; Langevin

and Stow, this issue).
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Summary and future developments

Remote sensing data and analysis techniques are now providing detailed information

for detecting and monitoring changes in land cover and land use. This has become

increasingly apparent over the last decade. In the first decade of data availability, change

detection methods were not used widely (Franklin, 2001). This can be attributed to a

general lack of familiarity and experience with the data (in both analog and digital

formats), a lack of understanding among researchers about the spatial and temporal

dynamics of the landscapes under investigation, and the fact that the data originally were

too coarse (spectrally and spatially) to be of any use beyond Anderson Level I

classification (Table 2). These drawbacks have steadily diminished over time, due to

advances in sensor performance, image processing techniques, and informative research

applications. Further, quality in sensor design and data flow will continue to improve,

which will no doubt lead to an expansion of our understanding of the types and rates of

land-cover and land-use changes and their causes, distributions, rates and consequences.
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